Data Summaries in R

Author

Wade K. Copeland

Published

October 15, 2025

Introduction

An essential part of any data analysis project is to understand the data at hand. For this task, we will create a function that takes as input a variable from the data, a categorical variable to describe by, and returns summary tables and plots.

This tutorial uses the R programming language (R Core Team 2019). All of the files needed to reproduce these results can be downloaded from the Git repository https://github.com/wkingc/data-summaries-r.

Required Libraries

The libraries knitr, bookdown, and kableExtra are used to generate the HTML output (Xie 2019, 2018; Zhu 2019). The ggplot2 library is loaded for the example data set that is used in this tutorial (Wickham 2016). The Hmisc library provides functionality needed to create variable labels (Harrell Jr, Charles Dupont, and others. 2019). The libraries reshape2 and dplyr are loaded for their data manipulation funtions (Wickham et al. 2019; Wickham 2007).

library("knitr")
library("bookdown")
library("kableExtra")
library("ggplot2")
library("Hmisc")
library("reshape2")
library("dplyr")

Example Data Setup

The data set used in this tutorial is mpg from the ggplot2 package. From the description in the manual:

This dataset contains a subset of the fuel economy data that the EPA makes available here. It contains only models which had a new release every year between 1999 and 2008 - this was used as a proxy for the popularity of the car.

set.seed(123)
data(mpg)
mpg <- data.frame(mpg)

colnames(mpg)[which(colnames(mpg) == "manufacturer")] <- "manu"

mpg$manu <- factor(mpg$manu)
mpg$model <- factor(mpg$model)
mpg$displ <- as.numeric(mpg$displ)
mpg$year <- factor(mpg$year, levels = c("1999", "2008"), ordered = TRUE)

mpg$dp <- as.Date(NA, origin = "1970-01-01")
mpg$dp[which(mpg$year == "1999")] <- sample(seq(as.Date('1999-01-01', format = "%Y-%m-%d", origin = "1970-01-01"), as.Date('1999-12-25', format = "%Y-%m-%d", origin = "1970-01-01"), by="day"), dim(mpg)[1]/2)
mpg$dp[which(mpg$year == "2008")] <- sample(seq(as.Date('2008-01-01', format = "%Y-%m-%d", origin = "1970-01-01"), as.Date('2008-12-25', format = "%Y-%m-%d", origin = "1970-01-01"), by="day"), dim(mpg)[1]/2)
mpg$dp[sample(1:length(mpg$dp), size = 20)] <- NA
mpg$dp[10] <- as.Date('1000-05-02', format = "%Y-%m-%d", origin = "1970-01-01")

mpg$dplt <- as.POSIXlt(NA, origin = "1970-01-01 0:0:0")
mpg$dplt[which(mpg$year == "1999")] <- sample(seq(as.POSIXlt('1999-01-01 0:0:0', format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01 0:0:0"), as.POSIXlt('1999-12-25 0:0:0', format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01 0:0:0"), by="min"), dim(mpg)[1]/2)
mpg$dplt[which(mpg$year == "2008")] <- sample(seq(as.POSIXlt('2008-01-01 0:0:0', format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01 0:0:0"), as.POSIXlt('2008-12-25 0:0:0', format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01 0:0:0"), by="sec"), dim(mpg)[1]/2)
mpg$dplt[sample(1:length(mpg$dplt), size = 20)] <- NA

mpg$dpct <- as.POSIXct(NA, origin = "1970-01-01 0:0:0")
mpg$dpct[which(mpg$year == "1999")] <- sample(seq(as.POSIXct('1999-01-01 0:0:0', format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01 0:0:0"), as.POSIXct('1999-12-25 0:0:0', format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01 0:0:0"), by="min"), dim(mpg)[1]/2)
mpg$dpct[which(mpg$year == "2008")] <- sample(seq(as.POSIXct('2008-01-01 0:0:0', format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01 0:0:0"), as.POSIXct('2008-12-25 0:0:0', format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01 0:0:0"), by="sec"), dim(mpg)[1]/2)
mpg$dpct[sample(1:length(mpg$dpct), size = 20)] <- NA

mpg$cyl <- factor(mpg$cyl, levels = c(4, 5, 6, 8), ordered = TRUE)

mpg$trans <- factor(mpg$trans)
mpg$drv <- factor(mpg$drv, levels = c("f", "r", "4"), labels = c("front-wheel drive", "rear wheel drive", "4wd"))
mpg$fl <- factor(mpg$fl)
mpg$class <- factor(mpg$class)

mpg$rn <- rnorm(dim(mpg)[1], mean = 10, sd = 5)
mpg$rn[sample(1:length(mpg$rn), size = 50)] <- NA

mpg$rdifftime <- rnorm(dim(mpg)[1], mean = 10, sd = 5)
mpg$rdifftime[sample(1:length(mpg$rdifftime), size = 50)] <- NA
mpg$rdifftime <- as.difftime(mpg$rdifftime, units = "weeks")
mpg$rdifftime[which(mpg$rdifftime < 0)] <- 0

mpg$logical <- mpg$rdifftime >= 10

mpg$party <- factor(sample(c("republican", "democrat", "independent", NA), dim(mpg)[1], replace = TRUE), levels = c("republican", "democrat", "independent"))

mpg$comments <- sample(c("I like this car!", "Meh.", "This is the worst car ever!", "Does it come in green?", "want cheese flavoured cars.", "Does it also fly?", "Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah", "Missing", ".", NA), dim(mpg)[1], replace = TRUE)

mpg$miss <- NA

label(mpg$manu) <- "manufacturer"
label(mpg$model) <- "model name"
label(mpg$displ) <- "engine displacement, in litres"
label(mpg$year) <- "year of manufacture"
label(mpg$dp) <- "date of purchase (Date class)"
label(mpg$dplt) <- "date of purchase (POSIXlt class)"
label(mpg$dpct) <- "date of purchase (POSIXct class)"
label(mpg$cyl) <- "number of cylinders"
label(mpg$trans) <- "type of transmission"
label(mpg$drv) <- "drive type"
label(mpg$cty) <- "city miles per gallon"
label(mpg$hwy) <- "highway miles per gallon"
label(mpg$fl) <- "fuel type"
label(mpg$class) <- "type of car"
label(mpg$rn) <- "some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5"
label(mpg$rdifftime) <- "some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks"
label(mpg$logical) <- "some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, and then set to TRUE if the difference is greater than 10"
label(mpg$party) <- "some random political parties"
label(mpg$comments) <- "some random comments"
label(mpg$miss) <- "an all missing variable"

kable(head(mpg), caption = "Header of <b>mpg</b>.", booktabs = TRUE, escape = FALSE) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
Header of mpg.
manu model displ year cyl trans drv cty hwy fl class dp dplt dpct rn rdifftime logical party comments miss
audi a4 1.8 1999 4 auto(l5) front-wheel drive 18 29 p compact 1999-06-28 1999-10-07 08:18:00 1999-10-27 08:00:00 8.935759 9.675375 weeks FALSE NA Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah NA
audi a4 1.8 1999 4 manual(m5) front-wheel drive 21 29 p compact 1999-01-14 1999-04-28 07:00:00 1999-01-25 04:26:00 9.531816 13.782912 weeks TRUE democrat Does it also fly? NA
audi a4 2.0 2008 4 manual(m6) front-wheel drive 20 31 p compact 2008-02-08 2008-05-04 14:32:00 2008-01-06 09:57:35 9.566429 4.928852 weeks FALSE independent . NA
audi a4 2.0 2008 4 auto(av) front-wheel drive 21 30 p compact 2008-07-14 2008-02-11 12:43:49 2008-01-30 06:40:31 17.207309 6.539646 weeks FALSE democrat Does it come in green? NA
audi a4 2.8 1999 6 auto(l5) front-wheel drive 16 26 p compact 1999-07-14 1999-07-22 13:22:00 1999-03-02 01:18:00 NA NA weeks NA NA . NA
audi a4 2.8 1999 6 manual(m5) front-wheel drive 18 26 p compact 1999-11-02 1999-08-20 08:26:00 1999-04-03 22:19:00 14.172008 8.202642 weeks FALSE NA This is the worst car ever! NA

Data Summary Function

Below are a set of functions I wrote to using S4 (see https://www.cyclismo.org/tutorial/R/s4Classes.html for a gentle introduction to object oriented programming in R), culminating into a single function called data_summary. The basic structure uses an object of class dataSummaries and then, based on the class of x, the dataSummariesSetup method applied to the dataSummaries class, returns an object of class dataSummariesCharacter, dataSummariesNumeric, dataSummariesDate, or dataSummariesDifftime. Each of these four output classes inherits from the dataSummaries class; thus any method written for dataSummaries also applies to the four classes that inherit from it.

As input the data_summary function takes a variable to summarize (x), an optional variable or variables (as a character string) to summarize by (by), the data (data), and the units to use for difftime if x refers to a Date, POSIXlt, POSIXct, or difftime object in the data.

As output, the function returns an object of class dataSummaries. The function has a show method and a method called make_output that generates knitr friendly output. The summary table and plot can also be accessed individually through their accessor functions, data_summary_table, and data_summary_plot, respectively.

setOldClass(c("ggplot", "gg"))

dataSummaries <- setClass(
    "dataSummaries",
    
    slots = c(
        x = "character",
        by = "character",
        data = "data.frame",
        difftime_units = "character",
        xLab = "character",
        byLab = "character",
        table = "data.frame",
        plot = "ANY"
    ),
    
    prototype = list(
        x = character(0),
        by = character(0),
        data = data.frame(),
        difftime_units = character(0),
        xLab = character(0),
        byLab = character(0),
        table = data.frame(),
        plot = NULL
    ),
)

invisible(setValidity("dataSummaries", function(object) {
  if (!is.null(object@plot) && !inherits(object@plot, "ggplot")) {
    return("The 'plot' slot must be a ggplot object or NULL.")
  }
  TRUE
}))

dataSummariesCharacter <- setClass(
    "dataSummariesCharacter",
    
    slots = c(
        type = "character"
    ),
    
    prototype = list(
        type = character(0)
    ),
    
    contains = "dataSummaries"
)

dataSummariesNumeric <- setClass(
    "dataSummariesNumeric",
    
    slots = c(
        type = "character"
    ),
    
    prototype = list(
        type = character(0)
    ),
    
    contains = "dataSummaries"
)

dataSummariesDate <- setClass(
    "dataSummariesDate",
    
    slots = c(
        type = "character"
    ),
    
    prototype = list(
        type = character(0)
    ),
    
    contains = "dataSummaries"
)

dataSummariesDifftime <- setClass(
    "dataSummariesDifftime",
    
    slots = c(
        type = "character"
    ),
    
    prototype = list(
        type = character(0)
    ),
    
    contains = "dataSummaries"
)

invisible(setGeneric(name = "dataSummariesSetup", def = function(object) standardGeneric("dataSummariesSetup")))
setMethod(
    f = "dataSummariesSetup",
    signature = "dataSummaries", 
    definition = function(object) 
    {
        x = object@x
        by = object@by
        data = object@data
        
        xLab <- label(data[, x])
        colnames(data)[which(colnames(data) == x)] <- "var"
        
        if (length(by) == 0) {
            data$by <- factor(data$by <- "")
            label(data$by) <- ""
            byLab <- label(data$by)
        } else {
            data$by <- interaction(data[, by], sep = ", ")
            byLab <- paste(label(data[, by]), collapse = " by ")
            
            overall <- data
            overall$by <- "Overall"
            data <- rbind(data, overall)
        }
        
        data <- data[, c("var", "by")]
        
        if ("labelled" %in% class(data$var)) {
            class(data$var) <- class(data$var)[(-1)*which(class(data$var) == "labelled")]
        }
        
        object@xLab <- xLab
        object@byLab <- byLab
        object@data <- data
        
        if (any(c("character", "factor", "logical") %in% class(data$var))) { 
            return(dataSummariesCharacter(object, type = class(data$var)))
        } else if (any(c("numeric", "integer") %in% class(data$var))) {
            return(dataSummariesNumeric(object, type = class(data$var))) 
        } else if (any(c("Date", "POSIXlt", "POSIXct", "POSIXt") %in% class(data$var))) {
            if (length(object@difftime_units) == 0) stop("You need to specify the units for the difference in time.  See help(difftime) for additional information.")
            return(dataSummariesDate(object, type = class(data$var))) 
        } else if ("difftime" %in% class(data$var)) {
            if (length(object@difftime_units) == 0) stop("You need to specify the units for the difference in time.  See help(difftime) for additional information.")
            return(dataSummariesDifftime(object, type = class(data$var))) 
        } else {
            stop("x is an unsupported class")
        }
    }
)

invisible(setGeneric(name = "data_summary_switch", def = function(object) standardGeneric("data_summary_switch")))

setMethod(
    f = "data_summary_switch",
    signature = "dataSummariesCharacter", 
    definition = function(object) 
    {
        xLab <- object@xLab
        byLab <- object@byLab
        data <- object@data
        
        freqs <- table(data$var, data$by, useNA = "ifany", dnn = c(xLab, byLab))
        
        rownames(freqs)[which(is.na(rownames(freqs)))] <- "R NA Value"
        colnames(freqs)[which(is.na(colnames(freqs)))] <- "R NA Value" 
        
        props <- round(100*prop.table(freqs, 2), 2)
        
        res <- freqs
        for (i in 1:dim(freqs)[2]) {
            res[, i] <- paste(freqs[, i], " (", props[, i], "%)", sep = "")
        }
        res <- as.data.frame(res)
        colnames(res) <- c("var", "by", "freq")
        res <- dcast(res, var ~ by, value.var = "freq")
        colnames(res)[1] <- xLab
        if (byLab == "") colnames(res)[2] <- "n (%)"
        
        pData <- as.data.frame(props)
        colnames(pData) <- c("var", "by", "freq")
        
        levs <- as.character(pData$var)
        tmp <- nchar(levs)
        strCombRes <- list()
        for (k in 1:length(levs)) {
            strRes <- list()
            j = 0
            for (i in 1:ceiling(max(tmp)/30)) {
                strRes[[i]] <- substr(levs[k], j, 30*i)
                j = 30*i + 1
            }
            strCombRes[[k]] <- unlist(strRes)    
        }
        
        foo <- function(x) {
            if (!(length(which(x == "")) == 0)) x <- x[-1*which(x == "")]
            x <- paste(x, collapse = "\n")
            
            return(x)
        }
        
        levs <- unlist(lapply(strCombRes, foo))
        
        pData$names <- factor(rownames(pData), levels = rownames(pData), labels = levs)
        pData <- pData[, -1]
        
        colfunc <- colorRampPalette(c("#e41a1c","#377eb8","#4daf4a","#984ea3","#ff7f00"))
        colors <- colfunc(length(levels(pData$names)))
        
        p = ggplot(data = pData, aes(x = by, y = freq, fill = names)) +
            scale_fill_manual(values = colors) + 
            geom_bar(stat = "identity") + 
            xlab(paste(strwrap(xLab, width = 60), collapse = "\n")) +
            ylab("Percent") +
            theme(
                axis.line = element_line(colour = "black"),
                panel.border = element_rect(colour = "black", fill = NA, size = 1),
                axis.text = element_text(size = 12),
                axis.text.x = element_text(angle = 50, hjust = 1),
                axis.title = element_text(size = 12),
                legend.title = element_blank(),
                legend.position = "right",
                panel.grid = element_line(color = "lightgray"),
                panel.background = element_rect(fill = "white", colour = "white"))
        
        object@table <- res
        object@plot <- p
        
        return(object)
    }
)

setMethod(
    f = "data_summary_switch",
    signature = "dataSummariesNumeric", 
    definition = function(object) 
    {
        xLab <- object@xLab
        byLab <- object@byLab
        data <- object@data
        
        if (any(is.na(data$by))) {
            byLevs <- levels(data$by)
            data$by <- as.character(data$by)
            
            data$by[which(is.na(as.character(data$by)))] <- "R NA Value"
            data$by <- factor(data$by, levels = c(byLevs, "R NA Value"))
        }
        
        percMiss <- function(x) res <- round((length(which(is.na(x)))/length(x))*100, 2)
        
        res <- data %>%
            group_by(by) %>%
            summarize(
                label = xLab,
                n = length(na.omit(var)),
                miss = percMiss(var),
                mean = round(mean(var, na.rm = TRUE), 2),
                sd = round(sd(var, na.rm = TRUE), 2),
                median = round(median(var, na.rm = TRUE), 2),
                mad = round(mad(var, na.rm = TRUE), 2),
                q25 = round(quantile(var, probs = 0.25, na.rm = TRUE, type = 1), 2),
                q75 = round(quantile(var, probs = 0.75, na.rm = TRUE, type = 1), 2),
                IQR = round(IQR(var, na.rm = TRUE), 2),
                min = round(min(var, na.rm = TRUE), 2),
                max = round(max(var, na.rm = TRUE), 2)
            )
        
        res <- data.frame(res)
        
        colnames(res) <- c(byLab, "Label", "N", "P NA", "Mean", "S Dev", "Med", "MAD", "25th P", "75th P", "IQR", "Min", "Max")
        
        pData <- na.omit(data.frame(data[, c("var", "by")]))
        
        p = ggplot(data = pData, aes(x = by, y = var)) +
            geom_boxplot(position = position_dodge(1), fill = "#2c7bb6") +
            xlab(byLab) +
            ylab(paste(strwrap(xLab, width = 40), collapse = "\n")) +
            theme(
                axis.line = element_line(colour = "black"),
                panel.border = element_rect(colour = "black", fill = NA, size = 1),
                legend.position = "none",
                axis.text = element_text(size = 12),
                axis.text.x = element_text(angle = 50, hjust = 1),
                axis.title = element_text(size = 12), 
                panel.grid = element_line(color = "lightgray"),
                panel.background = element_rect(fill = "white", colour = "white"))
        
        object@table <- res
        object@plot <- p
        
        return(object)
    }
)

setMethod(
    f = "data_summary_switch",
    signature = "dataSummariesDate", 
    definition = function(object) 
    {
        xLab <- object@xLab
        byLab <- object@byLab
        data <- object@data
        difftime_units <- object@difftime_units
        
        if (any(is.na(data$by))) {
            byLevs <- levels(data$by)
            data$by <- as.character(data$by)
            
            data$by[which(is.na(as.character(data$by)))] <- "R NA Value"
            data$by <- factor(data$by, levels = c(byLevs, "R NA Value"))
        }
        
        percMiss <- function(x) round((length(which(is.na(x)))/length(x))*100, 2)
        
        sdDate <- function(x) {
            res <- difftime(x, mean(x, na.rm = TRUE), units = "secs")
            res <- as.numeric(as.character(res))
            res <- sd(res, na.rm = TRUE)
            res <- as.difftime(res, units = "secs")
            units(res) <- difftime_units
            
            return(res)
        }
        
        sdDate(data$var)
        
        madDate <- function(x) {
            res <- difftime(x, mean(x, na.rm = TRUE), units = "secs")
            res <- as.numeric(as.character(res))
            res <- mad(res, na.rm = TRUE)
            res <- as.difftime(res, units = "secs")
            units(res) <- difftime_units
            
            return(res)
        }
        
        dquantile <- function(x, probs){
            sx <- sort(x)
            pos <- round(probs*length(x))
            return(sx[pos])
        }
        
        q25Date <- function(x) dquantile(x, probs = 0.25)
        
        q75Date <- function(x) dquantile(x, probs = 0.75)
        
        IQRdate <- function(x) {
            res <- difftime(dquantile(x, probs = 0.75), dquantile(x, probs = 0.25), units = "secs")
            units(res) <- difftime_units
            return(res)
        }
        
        res <- data %>%
            group_by(by) %>%
            summarize(
                label = xLab,
                n = length(na.omit(var)),
                miss = percMiss(var),
                mean = mean(var, na.rm = TRUE),
                sd = round(sdDate(var), 2),
                median = median(var, na.rm = TRUE),
                mad = round(madDate(var), 2),
                q25 = q25Date(var),
                q75 = q75Date(var),
                IQR = IQRdate(var),
                min = min(var, na.rm = TRUE),
                max = max(var, na.rm = TRUE)
            )
        
        res <- data.frame(res)
        
        colnames(res) <- c(byLab, "Label", "N", "P NA", "Mean", "S Dev", "Med", "MAD", "25th P", "75th P", "IQR", "Min", "Max")
        
        pData <- na.omit(data.frame(data[, c("var", "by")]))
        
        if ("POSIXlt" %in% class(pData$var)) pData$var <- as.POSIXct(pData$var)
        
        p = ggplot(data = pData, aes(x = by, y = var)) +
            geom_boxplot(position = position_dodge(1), fill = "#2c7bb6") +
            xlab(byLab) +
            ylab(paste(strwrap(xLab, width = 40), collapse = "\n")) +
            theme(
                axis.line = element_line(colour = "black"),
                panel.border = element_rect(colour = "black", fill = NA, size = 1),
                legend.position = "none",
                axis.text = element_text(size = 12),
                axis.text.x = element_text(angle = 50, hjust = 1),
                axis.title = element_text(size = 12), 
                panel.grid = element_line(color = "lightgray"),
                panel.background = element_rect(fill = "white", colour = "white"))
        
        object@table <- res
        object@plot <- p
        
        return(object)
    }
)

setMethod(
    f = "data_summary_switch",
    signature = "dataSummariesDifftime", 
    definition = function(object) 
    {
        xLab <- object@xLab
        byLab <- object@byLab
        data <- object@data
        difftime_units <- object@difftime_units
        
        if (any(is.na(data$by))) {
            byLevs <- levels(data$by)
            data$by <- as.character(data$by)
            
            data$by[which(is.na(as.character(data$by)))] <- "R NA Value"
            data$by <- factor(data$by, levels = c(byLevs, "R NA Value"))
        }
        
        percMiss <- function(x) res <- round((length(which(is.na(x)))/length(x))*100, 2)
        
        units(data$var) <- "days"
        
        meanDate <- function(x) {
            res <- mean(x, na.rm = TRUE)
            units(res) <- difftime_units
            return(res)
        }
        
        medianDate <- function(x) {
            res <- median(x, na.rm = TRUE)
            units(res) <- difftime_units
            return(res)
        }
        
        sdDate <- function(x) {
            res <- as.difftime(sd(as.numeric(x), na.rm = TRUE), format = "%X", units = "days")
            units(res) <- difftime_units
            return(res)
        }
        
        madDate <- function(x) {
            res <- as.difftime(mad(as.numeric(x), na.rm = TRUE), format = "%X", units = "days")
            units(res) <- difftime_units
            return(res)
        }
        
        q25Date <- function(x) {
            res <- as.difftime(quantile(as.numeric(x), probs = 0.25, na.rm = TRUE, type = 1), units = "days")
            units(res) <- difftime_units
            return(res)
        }
        
        q75Date <- function(x) {
            res <- as.difftime(quantile(as.numeric(x), probs = 0.75, na.rm = TRUE, type = 1), units = "days")
            units(res) <- difftime_units
            return(res)
        }
        
        IQRdate <- function(x) {
            res <- as.difftime(IQR(as.numeric(x), na.rm = TRUE), format = "%X", units = "days")
            units(res) <- difftime_units
            return(res)
        }
        
        minDate <- function(x) {
            res <- as.difftime(min(as.numeric(x), na.rm = TRUE), format = "%X", units = "days")
            units(res) <- difftime_units
            return(res)
        }
        
        maxDate <- function(x) {
            res <- as.difftime(max(as.numeric(x), na.rm = TRUE), format = "%X", units = "days")
            units(res) <- difftime_units
            return(res)
        }  
        
        res <- data %>%
            group_by(by) %>%
            summarize(
                label = xLab,
                n = length(na.omit(var)),
                miss = percMiss(var),
                mean = round(meanDate(var), 2),
                sd = round(sdDate(var), 2),
                median = round(medianDate(var), 2),
                mad = round(madDate(var), 2),
                q25 = round(q25Date(var), 2),
                q75 = round(q75Date(var), 2),
                IQR = round(IQRdate(var), 2),
                min = round(minDate(var), 2),
                max = round(maxDate(var), 2)
            )
        
        res <- data.frame(res)
        
        colnames(res) <- c(byLab, "Label", "N", "P NA", "Mean", "S Dev", "Med", "MAD", "25th P", "75th P", "IQR", "Min", "Max")
        
        pData <- na.omit(data.frame(data[, c("var", "by")]))
        units(pData$var) <- difftime_units
        
        p = ggplot(data = pData, aes(x = by, y = var)) +
            geom_boxplot(position = position_dodge(1), fill = "#2c7bb6") +
            xlab(byLab) +
            ylab(paste(strwrap(xLab, width = 40), collapse = "\n")) +
            theme(
                axis.line = element_line(colour = "black"),
                panel.border = element_rect(colour = "black", fill = NA, size = 1),
                legend.position = "none",
                axis.text = element_text(size = 12),
                axis.text.x = element_text(angle = 50, hjust = 1),
                axis.title = element_text(size = 12), 
                panel.grid = element_line(color = "lightgray"),
                panel.background = element_rect(fill = "white", colour = "white"))
        
        object@table <- res
        object@plot <- p
        
        return(object)
    }
)

setMethod(
    f = "show",
    signature = "dataSummaries", 
    definition = function(object) 
    {
        print(object@table)
        print(object@plot)
    }
)

invisible(setGeneric(name = "make_kable_output", def = function(object) standardGeneric("make_kable_output")))
setMethod(
    f = "make_kable_output",
    signature = "dataSummaries", 
    definition = function(object) 
    {
        if (object@byLab == "") {
            print(
                kable(
                    object@table, caption = paste("Summary statistics of ", object@xLab, ".", sep = ""), booktabs = TRUE, table.attr = "data-quarto-disable-processing=true") %>% 
                    kable_styling(bootstrap_options = c("striped", "hover"), full_width = TRUE, font_size = 14))
        } else {
            print(
                kable(
                    object@table, caption = paste("Summary statistics of ", object@xLab, " by ", object@byLab, ".", sep = ""), booktabs = TRUE, table.attr = "data-quarto-disable-processing=true") %>% 
                    kable_styling(bootstrap_options = c("striped", "hover"), full_width = TRUE, font_size = 14))
        }
    }
)

invisible(setGeneric(name = "make_complete_output", def = function(object) standardGeneric("make_complete_output")))
setMethod(
    f = "make_complete_output",
    signature = "dataSummaries", 
    definition = function(object) 
    {
        if (object@byLab == "") {
            print(
                kable(
                    object@table, caption = paste("Summary statistics of ", object@xLab, ".", sep = ""), booktabs = TRUE, table.attr = "data-quarto-disable-processing=true") %>% 
                    kable_styling(bootstrap_options = c("striped", "hover"), full_width = TRUE, font_size = 14))
        } else {
            print(
                kable(
                    object@table, caption = paste("Summary statistics of ", object@xLab, " by ", object@byLab, ".", sep = ""), booktabs = TRUE, table.attr = "data-quarto-disable-processing=true") %>% 
                    kable_styling(bootstrap_options = c("striped", "hover"), full_width = TRUE, font_size = 14))
        }
        
        print(object@plot)
    }
)

invisible(setGeneric(name = "data_summary_table", def = function(object) standardGeneric("data_summary_table")))
setMethod(
    f = "data_summary_table",
    signature = "dataSummaries", 
    definition = function(object) 
    {
        object@table
    }
)

invisible(setGeneric(name = "data_summary_plot", def = function(object) standardGeneric("data_summary_plot")))
setMethod(
    f = "data_summary_plot",
    signature = "dataSummaries", 
    definition = function(object) 
    {
        object@plot
    }
)

data_summary <- function(x, by = character(0), data, difftime_units = character(0)) {
    object = dataSummaries(x = x, data = data, by = by, difftime_units = difftime_units)
    object = dataSummariesSetup(object)
    object = data_summary_switch(object)
}

Examples

show(cylSummaryExample)
  number of cylinders       n (%)
1                   4 81 (34.62%)
2                   5   4 (1.71%)
3                   6 79 (33.76%)
4                   8 70 (29.91%)

data_summary_table(cylSummaryExample)
  number of cylinders       n (%)
1                   4 81 (34.62%)
2                   5   4 (1.71%)
3                   6 79 (33.76%)
4                   8 70 (29.91%)
data_summary_plot(cylSummaryExample)

make_kable_output(cylSummaryExample)
Summary statistics of number of cylinders.
number of cylinders n (%)
4 81 (34.62%)
5 4 (1.71%)
6 79 (33.76%)
8 70 (29.91%)
make_complete_output(cylSummaryExample)
Summary statistics of number of cylinders.
number of cylinders n (%)
4 81 (34.62%)
5 4 (1.71%)
6 79 (33.76%)
8 70 (29.91%)

Stacked barplot of number of cylinders.
show(cylByYearSummaryExample)
  number of cylinders        1999        2008     Overall
1                   4 45 (38.46%) 36 (30.77%) 81 (34.62%)
2                   5      0 (0%)   4 (3.42%)   4 (1.71%)
3                   6 45 (38.46%) 34 (29.06%) 79 (33.76%)
4                   8 27 (23.08%) 43 (36.75%) 70 (29.91%)

data_summary_table(cylByYearSummaryExample)
  number of cylinders        1999        2008     Overall
1                   4 45 (38.46%) 36 (30.77%) 81 (34.62%)
2                   5      0 (0%)   4 (3.42%)   4 (1.71%)
3                   6 45 (38.46%) 34 (29.06%) 79 (33.76%)
4                   8 27 (23.08%) 43 (36.75%) 70 (29.91%)
data_summary_plot(cylByYearSummaryExample)

make_kable_output(cylByYearSummaryExample)
Summary statistics of number of cylinders by year of manufacture.
number of cylinders 1999 2008 Overall
4 45 (38.46%) 36 (30.77%) 81 (34.62%)
5 0 (0%) 4 (3.42%) 4 (1.71%)
6 45 (38.46%) 34 (29.06%) 79 (33.76%)
8 27 (23.08%) 43 (36.75%) 70 (29.91%)
make_complete_output(cylByYearSummaryExample)
Summary statistics of number of cylinders by year of manufacture.
number of cylinders 1999 2008 Overall
4 45 (38.46%) 36 (30.77%) 81 (34.62%)
5 0 (0%) 4 (3.42%) 4 (1.71%)
6 45 (38.46%) 34 (29.06%) 79 (33.76%)
8 27 (23.08%) 43 (36.75%) 70 (29.91%)

Stacked barplot of number of cylinders by year of manufacture.
show(cylByYearByPartySummaryExample)
  number of cylinders 1999, republican 2008, republican 1999, democrat
1                   4      14 (45.16%)          9 (36%)       12 (40%)
2                   5           0 (0%)           1 (4%)         0 (0%)
3                   6      12 (38.71%)          5 (20%)     7 (23.33%)
4                   8       5 (16.13%)         10 (40%)    11 (36.67%)
  2008, democrat 1999, independent 2008, independent     Overall  R NA Value
1     8 (25.81%)        9 (32.14%)       12 (35.29%) 81 (34.62%) 17 (30.91%)
2      2 (6.45%)            0 (0%)            0 (0%)   4 (1.71%)   1 (1.82%)
3     6 (19.35%)       13 (46.43%)       12 (35.29%) 79 (33.76%) 24 (43.64%)
4    15 (48.39%)        6 (21.43%)       10 (29.41%) 70 (29.91%) 13 (23.64%)

data_summary_table(cylByYearByPartySummaryExample)
  number of cylinders 1999, republican 2008, republican 1999, democrat
1                   4      14 (45.16%)          9 (36%)       12 (40%)
2                   5           0 (0%)           1 (4%)         0 (0%)
3                   6      12 (38.71%)          5 (20%)     7 (23.33%)
4                   8       5 (16.13%)         10 (40%)    11 (36.67%)
  2008, democrat 1999, independent 2008, independent     Overall  R NA Value
1     8 (25.81%)        9 (32.14%)       12 (35.29%) 81 (34.62%) 17 (30.91%)
2      2 (6.45%)            0 (0%)            0 (0%)   4 (1.71%)   1 (1.82%)
3     6 (19.35%)       13 (46.43%)       12 (35.29%) 79 (33.76%) 24 (43.64%)
4    15 (48.39%)        6 (21.43%)       10 (29.41%) 70 (29.91%) 13 (23.64%)
data_summary_plot(cylByYearByPartySummaryExample)

make_kable_output(cylByYearByPartySummaryExample)
Summary statistics of number of cylinders by year of manufacture by some random political parties.
number of cylinders 1999, republican 2008, republican 1999, democrat 2008, democrat 1999, independent 2008, independent Overall R NA Value
4 14 (45.16%) 9 (36%) 12 (40%) 8 (25.81%) 9 (32.14%) 12 (35.29%) 81 (34.62%) 17 (30.91%)
5 0 (0%) 1 (4%) 0 (0%) 2 (6.45%) 0 (0%) 0 (0%) 4 (1.71%) 1 (1.82%)
6 12 (38.71%) 5 (20%) 7 (23.33%) 6 (19.35%) 13 (46.43%) 12 (35.29%) 79 (33.76%) 24 (43.64%)
8 5 (16.13%) 10 (40%) 11 (36.67%) 15 (48.39%) 6 (21.43%) 10 (29.41%) 70 (29.91%) 13 (23.64%)
make_complete_output(cylByYearByPartySummaryExample)
Summary statistics of number of cylinders by year of manufacture by some random political parties.
number of cylinders 1999, republican 2008, republican 1999, democrat 2008, democrat 1999, independent 2008, independent Overall R NA Value
4 14 (45.16%) 9 (36%) 12 (40%) 8 (25.81%) 9 (32.14%) 12 (35.29%) 81 (34.62%) 17 (30.91%)
5 0 (0%) 1 (4%) 0 (0%) 2 (6.45%) 0 (0%) 0 (0%) 4 (1.71%) 1 (1.82%)
6 12 (38.71%) 5 (20%) 7 (23.33%) 6 (19.35%) 13 (46.43%) 12 (35.29%) 79 (33.76%) 24 (43.64%)
8 5 (16.13%) 10 (40%) 11 (36.67%) 15 (48.39%) 6 (21.43%) 10 (29.41%) 70 (29.91%) 13 (23.64%)

Stacked barplot of number of cylinders by year of manufacture by some random political parties.
show(ctySummaryExample)
                   Label   N P NA  Mean S Dev Med  MAD 25th P 75th P IQR Min
1  city miles per gallon 234    0 16.86  4.26  17 4.45     14     19   5   9
  Max
1  35

data_summary_table(ctySummaryExample)
                   Label   N P NA  Mean S Dev Med  MAD 25th P 75th P IQR Min
1  city miles per gallon 234    0 16.86  4.26  17 4.45     14     19   5   9
  Max
1  35
data_summary_plot(ctySummaryExample)

make_kable_output(ctySummaryExample)
Summary statistics of city miles per gallon.
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
city miles per gallon 234 0 16.86 4.26 17 4.45 14 19 5 9 35
make_complete_output(ctySummaryExample)
Summary statistics of city miles per gallon.
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
city miles per gallon 234 0 16.86 4.26 17 4.45 14 19 5 9 35

Stacked barplot of city miles per gallon.
show(ctyByCylSummaryExample)
  number of cylinders                 Label   N P NA  Mean S Dev  Med  MAD
1                   4 city miles per gallon  81    0 21.01  3.50 21.0 2.97
2                   5 city miles per gallon   4    0 20.50  0.58 20.5 0.74
3                   6 city miles per gallon  79    0 16.22  1.77 16.0 1.48
4                   8 city miles per gallon  70    0 12.57  1.81 13.0 2.22
5             Overall city miles per gallon 234    0 16.86  4.26 17.0 4.45
  25th P 75th P IQR Min Max
1     19     22   3  15  35
2     20     21   1  20  21
3     15     18   3  11  19
4     11     14   3   9  16
5     14     19   5   9  35

data_summary_table(ctyByCylSummaryExample)
  number of cylinders                 Label   N P NA  Mean S Dev  Med  MAD
1                   4 city miles per gallon  81    0 21.01  3.50 21.0 2.97
2                   5 city miles per gallon   4    0 20.50  0.58 20.5 0.74
3                   6 city miles per gallon  79    0 16.22  1.77 16.0 1.48
4                   8 city miles per gallon  70    0 12.57  1.81 13.0 2.22
5             Overall city miles per gallon 234    0 16.86  4.26 17.0 4.45
  25th P 75th P IQR Min Max
1     19     22   3  15  35
2     20     21   1  20  21
3     15     18   3  11  19
4     11     14   3   9  16
5     14     19   5   9  35
data_summary_plot(ctyByCylSummaryExample)

make_kable_output(ctyByCylSummaryExample)
Summary statistics of city miles per gallon by number of cylinders.
number of cylinders Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4 city miles per gallon 81 0 21.01 3.50 21.0 2.97 19 22 3 15 35
5 city miles per gallon 4 0 20.50 0.58 20.5 0.74 20 21 1 20 21
6 city miles per gallon 79 0 16.22 1.77 16.0 1.48 15 18 3 11 19
8 city miles per gallon 70 0 12.57 1.81 13.0 2.22 11 14 3 9 16
Overall city miles per gallon 234 0 16.86 4.26 17.0 4.45 14 19 5 9 35
make_complete_output(ctyByCylSummaryExample)
Summary statistics of city miles per gallon by number of cylinders.
number of cylinders Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4 city miles per gallon 81 0 21.01 3.50 21.0 2.97 19 22 3 15 35
5 city miles per gallon 4 0 20.50 0.58 20.5 0.74 20 21 1 20 21
6 city miles per gallon 79 0 16.22 1.77 16.0 1.48 15 18 3 11 19
8 city miles per gallon 70 0 12.57 1.81 13.0 2.22 11 14 3 9 16
Overall city miles per gallon 234 0 16.86 4.26 17.0 4.45 14 19 5 9 35

Stacked barplot of city miles per gallon by number of cylinders.
show(ctyByCylByYearSummaryExample)
  number of cylinders by year of manufacture                 Label   N P NA
1                                    4, 1999 city miles per gallon  45    0
2                                    6, 1999 city miles per gallon  45    0
3                                    8, 1999 city miles per gallon  27    0
4                                    4, 2008 city miles per gallon  36    0
5                                    5, 2008 city miles per gallon   4    0
6                                    6, 2008 city miles per gallon  34    0
7                                    8, 2008 city miles per gallon  43    0
8                                    Overall city miles per gallon 234    0
   Mean S Dev  Med  MAD 25th P 75th P IQR Min Max
1 20.84  4.24 19.0 2.97     18     21 3.0  15  35
2 16.07  1.67 16.0 2.97     15     18 3.0  13  19
3 12.22  1.65 11.0 0.00     11     13 2.0  11  16
4 21.22  2.29 21.0 1.48     20     22 2.0  17  28
5 20.50  0.58 20.5 0.74     20     21 1.0  20  21
6 16.41  1.91 17.0 1.48     15     18 2.5  11  19
7 12.79  1.88 13.0 1.48     12     14 2.0   9  16
8 16.86  4.26 17.0 4.45     14     19 5.0   9  35

data_summary_table(ctyByCylByYearSummaryExample)
  number of cylinders by year of manufacture                 Label   N P NA
1                                    4, 1999 city miles per gallon  45    0
2                                    6, 1999 city miles per gallon  45    0
3                                    8, 1999 city miles per gallon  27    0
4                                    4, 2008 city miles per gallon  36    0
5                                    5, 2008 city miles per gallon   4    0
6                                    6, 2008 city miles per gallon  34    0
7                                    8, 2008 city miles per gallon  43    0
8                                    Overall city miles per gallon 234    0
   Mean S Dev  Med  MAD 25th P 75th P IQR Min Max
1 20.84  4.24 19.0 2.97     18     21 3.0  15  35
2 16.07  1.67 16.0 2.97     15     18 3.0  13  19
3 12.22  1.65 11.0 0.00     11     13 2.0  11  16
4 21.22  2.29 21.0 1.48     20     22 2.0  17  28
5 20.50  0.58 20.5 0.74     20     21 1.0  20  21
6 16.41  1.91 17.0 1.48     15     18 2.5  11  19
7 12.79  1.88 13.0 1.48     12     14 2.0   9  16
8 16.86  4.26 17.0 4.45     14     19 5.0   9  35
data_summary_plot(ctyByCylByYearSummaryExample)

make_kable_output(ctyByCylByYearSummaryExample)
Summary statistics of city miles per gallon by number of cylinders by year of manufacture.
number of cylinders by year of manufacture Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4, 1999 city miles per gallon 45 0 20.84 4.24 19.0 2.97 18 21 3.0 15 35
6, 1999 city miles per gallon 45 0 16.07 1.67 16.0 2.97 15 18 3.0 13 19
8, 1999 city miles per gallon 27 0 12.22 1.65 11.0 0.00 11 13 2.0 11 16
4, 2008 city miles per gallon 36 0 21.22 2.29 21.0 1.48 20 22 2.0 17 28
5, 2008 city miles per gallon 4 0 20.50 0.58 20.5 0.74 20 21 1.0 20 21
6, 2008 city miles per gallon 34 0 16.41 1.91 17.0 1.48 15 18 2.5 11 19
8, 2008 city miles per gallon 43 0 12.79 1.88 13.0 1.48 12 14 2.0 9 16
Overall city miles per gallon 234 0 16.86 4.26 17.0 4.45 14 19 5.0 9 35
make_complete_output(ctyByCylByYearSummaryExample)
Summary statistics of city miles per gallon by number of cylinders by year of manufacture.
number of cylinders by year of manufacture Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4, 1999 city miles per gallon 45 0 20.84 4.24 19.0 2.97 18 21 3.0 15 35
6, 1999 city miles per gallon 45 0 16.07 1.67 16.0 2.97 15 18 3.0 13 19
8, 1999 city miles per gallon 27 0 12.22 1.65 11.0 0.00 11 13 2.0 11 16
4, 2008 city miles per gallon 36 0 21.22 2.29 21.0 1.48 20 22 2.0 17 28
5, 2008 city miles per gallon 4 0 20.50 0.58 20.5 0.74 20 21 1.0 20 21
6, 2008 city miles per gallon 34 0 16.41 1.91 17.0 1.48 15 18 2.5 11 19
8, 2008 city miles per gallon 43 0 12.79 1.88 13.0 1.48 12 14 2.0 9 16
Overall city miles per gallon 234 0 16.86 4.26 17.0 4.45 14 19 5.0 9 35

Stacked barplot of city miles per gallon by number of cylinders by year of manufacture.
show(dpSummaryExample)
                           Label   N P NA       Mean        S Dev        Med
1  date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24
          MAD     25th P     75th P            IQR        Min        Max
1 74.98 weeks 1999-07-14 2008-09-01 476.7143 weeks 1999-01-04 2008-12-23

data_summary_table(dpSummaryExample)
                           Label   N P NA       Mean        S Dev        Med
1  date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24
          MAD     25th P     75th P            IQR        Min        Max
1 74.98 weeks 1999-07-14 2008-09-01 476.7143 weeks 1999-01-04 2008-12-23
data_summary_plot(dpSummaryExample)

make_kable_output(dpSummaryExample)
Summary statistics of date of purchase (Date class).
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24 74.98 weeks 1999-07-14 2008-09-01 476.7143 weeks 1999-01-04 2008-12-23
make_complete_output(dpSummaryExample)
Summary statistics of date of purchase (Date class).
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24 74.98 weeks 1999-07-14 2008-09-01 476.7143 weeks 1999-01-04 2008-12-23

Stacked barplot of date of purchase (Date class).
show(dpByCylSummaryExample)
  number of cylinders                         Label   N  P NA       Mean
1                   4 date of purchase (Date class)  73  8.75 2003-03-03
2                   5 date of purchase (Date class)   3 25.00 2008-09-25
3                   6 date of purchase (Date class)  71 10.13 2003-06-14
4                   8 date of purchase (Date class)  66  5.71 2005-03-13
5             Overall date of purchase (Date class) 213  8.58 2003-12-21
         S Dev        Med         MAD     25th P     75th P             IQR
1 234.04 weeks 1999-10-11 49.35 weeks 1999-06-03 2008-07-28 477.57143 weeks
2  16.08 weeks 2008-11-13  6.78 weeks 2008-05-20 2008-12-15  29.85714 weeks
3 235.29 weeks 1999-11-02 50.20 weeks 1999-07-14 2008-08-02 472.42857 weeks
4 229.06 weeks 2008-02-10 52.42 weeks 1999-10-04 2008-09-08 466.00000 weeks
5 236.59 weeks 1999-12-24 74.98 weeks 1999-07-14 2008-09-01 476.71429 weeks
         Min        Max
1 1999-01-14 2008-12-23
2 2008-05-20 2008-12-15
3 1999-01-05 2008-12-09
4 1999-01-04 2008-12-14
5 1999-01-04 2008-12-23

data_summary_table(dpByCylSummaryExample)
  number of cylinders                         Label   N  P NA       Mean
1                   4 date of purchase (Date class)  73  8.75 2003-03-03
2                   5 date of purchase (Date class)   3 25.00 2008-09-25
3                   6 date of purchase (Date class)  71 10.13 2003-06-14
4                   8 date of purchase (Date class)  66  5.71 2005-03-13
5             Overall date of purchase (Date class) 213  8.58 2003-12-21
         S Dev        Med         MAD     25th P     75th P             IQR
1 234.04 weeks 1999-10-11 49.35 weeks 1999-06-03 2008-07-28 477.57143 weeks
2  16.08 weeks 2008-11-13  6.78 weeks 2008-05-20 2008-12-15  29.85714 weeks
3 235.29 weeks 1999-11-02 50.20 weeks 1999-07-14 2008-08-02 472.42857 weeks
4 229.06 weeks 2008-02-10 52.42 weeks 1999-10-04 2008-09-08 466.00000 weeks
5 236.59 weeks 1999-12-24 74.98 weeks 1999-07-14 2008-09-01 476.71429 weeks
         Min        Max
1 1999-01-14 2008-12-23
2 2008-05-20 2008-12-15
3 1999-01-05 2008-12-09
4 1999-01-04 2008-12-14
5 1999-01-04 2008-12-23
data_summary_plot(dpByCylSummaryExample)

make_kable_output(dpByCylSummaryExample)
Summary statistics of date of purchase (Date class) by number of cylinders.
number of cylinders Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4 date of purchase (Date class) 73 8.75 2003-03-03 234.04 weeks 1999-10-11 49.35 weeks 1999-06-03 2008-07-28 477.57143 weeks 1999-01-14 2008-12-23
5 date of purchase (Date class) 3 25.00 2008-09-25 16.08 weeks 2008-11-13 6.78 weeks 2008-05-20 2008-12-15 29.85714 weeks 2008-05-20 2008-12-15
6 date of purchase (Date class) 71 10.13 2003-06-14 235.29 weeks 1999-11-02 50.20 weeks 1999-07-14 2008-08-02 472.42857 weeks 1999-01-05 2008-12-09
8 date of purchase (Date class) 66 5.71 2005-03-13 229.06 weeks 2008-02-10 52.42 weeks 1999-10-04 2008-09-08 466.00000 weeks 1999-01-04 2008-12-14
Overall date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24 74.98 weeks 1999-07-14 2008-09-01 476.71429 weeks 1999-01-04 2008-12-23
make_complete_output(dpByCylSummaryExample)
Summary statistics of date of purchase (Date class) by number of cylinders.
number of cylinders Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4 date of purchase (Date class) 73 8.75 2003-03-03 234.04 weeks 1999-10-11 49.35 weeks 1999-06-03 2008-07-28 477.57143 weeks 1999-01-14 2008-12-23
5 date of purchase (Date class) 3 25.00 2008-09-25 16.08 weeks 2008-11-13 6.78 weeks 2008-05-20 2008-12-15 29.85714 weeks 2008-05-20 2008-12-15
6 date of purchase (Date class) 71 10.13 2003-06-14 235.29 weeks 1999-11-02 50.20 weeks 1999-07-14 2008-08-02 472.42857 weeks 1999-01-05 2008-12-09
8 date of purchase (Date class) 66 5.71 2005-03-13 229.06 weeks 2008-02-10 52.42 weeks 1999-10-04 2008-09-08 466.00000 weeks 1999-01-04 2008-12-14
Overall date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24 74.98 weeks 1999-07-14 2008-09-01 476.71429 weeks 1999-01-04 2008-12-23

Stacked barplot of date of purchase (Date class) by number of cylinders.
show(dpByCylByCommentsSummaryExample)
         number of cylinders by some random comments
1                                               4, .
2                                               6, .
3                                               8, .
4  4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
5  6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
6  8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
7                               4, Does it also fly?
8                               6, Does it also fly?
9                               8, Does it also fly?
10                         4, Does it come in green?
11                         6, Does it come in green?
12                         8, Does it come in green?
13                               4, I like this car!
14                               6, I like this car!
15                               8, I like this car!
16                                           4, Meh.
17                                           6, Meh.
18                                           8, Meh.
19                                        4, Missing
20                                        6, Missing
21                                        8, Missing
22                    4, This is the worst car ever!
23                    6, This is the worst car ever!
24                    8, This is the worst car ever!
25                    4, want cheese flavoured cars.
26                    6, want cheese flavoured cars.
27                    8, want cheese flavoured cars.
28                                           Overall
29                                        R NA Value
                           Label   N  P NA       Mean        S Dev        Med
1  date of purchase (Date class)   5  0.00 2003-01-27 252.39 weeks 1999-10-26
2  date of purchase (Date class)   9  0.00 2004-08-21 241.15 weeks 2008-04-02
3  date of purchase (Date class)  10  9.09 2004-11-28 246.03 weeks 2008-02-07
4  date of purchase (Date class)   9  0.00 2002-08-10 241.71 weeks 1999-09-12
5  date of purchase (Date class)   7 12.50 2004-08-16 254.96 weeks 2008-05-13
6  date of purchase (Date class)   4  0.00 2004-01-07 274.68 weeks 2004-02-23
7  date of purchase (Date class)   5  0.00 2002-12-14 265.47 weeks 1999-08-06
8  date of purchase (Date class)   4 42.86 2001-09-28 225.84 weeks 1999-08-23
9  date of purchase (Date class)   4  0.00 2004-03-25 272.68 weeks 2004-04-06
10 date of purchase (Date class)  15  0.00 2003-07-23 243.88 weeks 1999-08-26
11 date of purchase (Date class)   3  0.00 2002-06-23 268.42 weeks 1999-09-09
12 date of purchase (Date class)   5  0.00 2006-07-09 217.62 weeks 2008-02-09
13 date of purchase (Date class)   8 11.11 2005-04-06 247.72 weeks 2008-07-29
14 date of purchase (Date class)   7 22.22 2002-01-30 232.78 weeks 1999-08-23
15 date of purchase (Date class)   4  0.00 2001-11-20 246.39 weeks 1999-09-27
16 date of purchase (Date class)   6  0.00 1999-05-01   9.86 weeks 1999-04-25
17 date of purchase (Date class)   6  0.00 2005-06-05 248.14 weeks 2008-04-27
18 date of purchase (Date class)   5 16.67 2008-04-14   9.80 weeks 2008-04-15
19 date of purchase (Date class)   3 50.00 2002-08-26 280.92 weeks 1999-10-09
20 date of purchase (Date class)   5  0.00 2004-12-23 255.73 weeks 2008-05-24
21 date of purchase (Date class)  14  0.00 2005-11-13 226.66 weeks 2008-04-02
22 date of purchase (Date class)   7  0.00 2003-05-28 247.48 weeks 1999-11-24
23 date of purchase (Date class)   9 10.00 2002-08-03 237.70 weeks 1999-10-18
24 date of purchase (Date class)   5  0.00 2006-09-25 213.60 weeks 2008-07-04
25 date of purchase (Date class)  10  9.09 2003-02-13 238.91 weeks 1999-12-10
26 date of purchase (Date class)  13  0.00 2002-04-09 231.98 weeks 1999-08-31
27 date of purchase (Date class)   8 11.11 2005-01-02 240.53 weeks 2008-02-06
28 date of purchase (Date class) 213  8.58 2003-12-21 236.59 weeks 1999-12-24
29 date of purchase (Date class)  20 16.67 2003-12-06 236.95 weeks 2003-12-24
            MAD     25th P     75th P              IQR        Min        Max
1   54.64 weeks 1999-02-10 2008-02-08 469.285714 weeks 1999-02-10 2008-08-12
2   44.27 weeks 1999-08-28 2008-06-18 459.571429 weeks 1999-07-14 2008-10-28
3   61.53 weeks 1999-10-05 2008-09-06 465.571429 weeks 1999-01-13 2008-11-27
4   38.34 weeks 1999-03-15 2008-05-25 479.857143 weeks 1999-03-08 2008-12-23
5   31.13 weeks 1999-06-07 2008-08-02 477.714286 weeks 1999-03-19 2008-10-07
6  342.16 weeks 1999-02-03 2008-06-12 488.142857 weeks 1999-02-03 2008-09-09
7   43.21 weeks 1999-01-14 2008-02-14 474.000000 weeks 1999-01-14 2008-11-26
8   12.71 weeks 1999-07-03       <NA>         NA weeks 1999-06-15 2008-03-25
9  347.46 weeks 1999-07-16 2008-08-25 475.428571 weeks 1999-07-16 2008-11-10
10  47.02 weeks 1999-03-24 2008-02-26 465.857143 weeks 1999-01-16 2008-10-13
11  27.75 weeks 1999-05-01 1999-09-09  18.714286 weeks 1999-05-01 2008-05-31
12  24.15 weeks 1999-02-01 2008-06-02 487.000000 weeks 1999-02-01 2008-12-08
13  20.33 weeks 1999-06-23 2008-09-23 482.857143 weeks 1999-06-08 2008-12-12
14  25.84 weeks 1999-04-23 2008-09-05 489.000000 weeks 1999-03-13 2008-09-05
15  30.61 weeks 1999-02-12 1999-11-28  41.285714 weeks 1999-02-12 2008-12-14
16   8.47 weeks 1999-03-26 1999-05-16   7.285714 weeks 1999-01-25 1999-08-11
17  26.58 weeks 1999-07-31 2008-05-08 457.714286 weeks 1999-01-05 2008-09-26
18  11.44 weeks 2008-02-21 2008-05-27  13.714286 weeks 2008-01-27 2008-07-13
19  34.74 weeks 1999-10-09       <NA>         NA weeks 1999-04-28 2008-11-11
20  21.18 weeks 1999-07-30 2008-08-09 471.142857 weeks 1999-07-30 2008-09-01
21  38.55 weeks 1999-10-04 2008-09-08 466.000000 weeks 1999-01-04 2008-11-15
22  50.62 weeks 1999-06-03 2008-02-10 453.428571 weeks 1999-03-30 2008-09-29
23  38.34 weeks 1999-04-20 2008-09-13 490.571429 weeks 1999-03-22 2008-10-26
24  16.10 weeks 1999-06-02 2008-09-18 485.142857 weeks 1999-06-02 2008-09-19
25  57.50 weeks 1999-06-09 2008-05-15 466.142857 weeks 1999-02-17 2008-10-31
26  36.85 weeks 1999-03-10 2008-06-24 484.857143 weeks 1999-01-26 2008-12-09
27  44.16 weeks 1999-05-21 2008-07-18 478.000000 weeks 1999-04-01 2008-10-18
28  74.98 weeks 1999-07-14 2008-09-01 476.714286 weeks 1999-01-04 2008-12-23
29 337.72 weeks 1999-08-14 2008-06-25 462.571429 weeks 1999-01-07 2008-12-03

data_summary_table(dpByCylByCommentsSummaryExample)
         number of cylinders by some random comments
1                                               4, .
2                                               6, .
3                                               8, .
4  4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
5  6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
6  8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
7                               4, Does it also fly?
8                               6, Does it also fly?
9                               8, Does it also fly?
10                         4, Does it come in green?
11                         6, Does it come in green?
12                         8, Does it come in green?
13                               4, I like this car!
14                               6, I like this car!
15                               8, I like this car!
16                                           4, Meh.
17                                           6, Meh.
18                                           8, Meh.
19                                        4, Missing
20                                        6, Missing
21                                        8, Missing
22                    4, This is the worst car ever!
23                    6, This is the worst car ever!
24                    8, This is the worst car ever!
25                    4, want cheese flavoured cars.
26                    6, want cheese flavoured cars.
27                    8, want cheese flavoured cars.
28                                           Overall
29                                        R NA Value
                           Label   N  P NA       Mean        S Dev        Med
1  date of purchase (Date class)   5  0.00 2003-01-27 252.39 weeks 1999-10-26
2  date of purchase (Date class)   9  0.00 2004-08-21 241.15 weeks 2008-04-02
3  date of purchase (Date class)  10  9.09 2004-11-28 246.03 weeks 2008-02-07
4  date of purchase (Date class)   9  0.00 2002-08-10 241.71 weeks 1999-09-12
5  date of purchase (Date class)   7 12.50 2004-08-16 254.96 weeks 2008-05-13
6  date of purchase (Date class)   4  0.00 2004-01-07 274.68 weeks 2004-02-23
7  date of purchase (Date class)   5  0.00 2002-12-14 265.47 weeks 1999-08-06
8  date of purchase (Date class)   4 42.86 2001-09-28 225.84 weeks 1999-08-23
9  date of purchase (Date class)   4  0.00 2004-03-25 272.68 weeks 2004-04-06
10 date of purchase (Date class)  15  0.00 2003-07-23 243.88 weeks 1999-08-26
11 date of purchase (Date class)   3  0.00 2002-06-23 268.42 weeks 1999-09-09
12 date of purchase (Date class)   5  0.00 2006-07-09 217.62 weeks 2008-02-09
13 date of purchase (Date class)   8 11.11 2005-04-06 247.72 weeks 2008-07-29
14 date of purchase (Date class)   7 22.22 2002-01-30 232.78 weeks 1999-08-23
15 date of purchase (Date class)   4  0.00 2001-11-20 246.39 weeks 1999-09-27
16 date of purchase (Date class)   6  0.00 1999-05-01   9.86 weeks 1999-04-25
17 date of purchase (Date class)   6  0.00 2005-06-05 248.14 weeks 2008-04-27
18 date of purchase (Date class)   5 16.67 2008-04-14   9.80 weeks 2008-04-15
19 date of purchase (Date class)   3 50.00 2002-08-26 280.92 weeks 1999-10-09
20 date of purchase (Date class)   5  0.00 2004-12-23 255.73 weeks 2008-05-24
21 date of purchase (Date class)  14  0.00 2005-11-13 226.66 weeks 2008-04-02
22 date of purchase (Date class)   7  0.00 2003-05-28 247.48 weeks 1999-11-24
23 date of purchase (Date class)   9 10.00 2002-08-03 237.70 weeks 1999-10-18
24 date of purchase (Date class)   5  0.00 2006-09-25 213.60 weeks 2008-07-04
25 date of purchase (Date class)  10  9.09 2003-02-13 238.91 weeks 1999-12-10
26 date of purchase (Date class)  13  0.00 2002-04-09 231.98 weeks 1999-08-31
27 date of purchase (Date class)   8 11.11 2005-01-02 240.53 weeks 2008-02-06
28 date of purchase (Date class) 213  8.58 2003-12-21 236.59 weeks 1999-12-24
29 date of purchase (Date class)  20 16.67 2003-12-06 236.95 weeks 2003-12-24
            MAD     25th P     75th P              IQR        Min        Max
1   54.64 weeks 1999-02-10 2008-02-08 469.285714 weeks 1999-02-10 2008-08-12
2   44.27 weeks 1999-08-28 2008-06-18 459.571429 weeks 1999-07-14 2008-10-28
3   61.53 weeks 1999-10-05 2008-09-06 465.571429 weeks 1999-01-13 2008-11-27
4   38.34 weeks 1999-03-15 2008-05-25 479.857143 weeks 1999-03-08 2008-12-23
5   31.13 weeks 1999-06-07 2008-08-02 477.714286 weeks 1999-03-19 2008-10-07
6  342.16 weeks 1999-02-03 2008-06-12 488.142857 weeks 1999-02-03 2008-09-09
7   43.21 weeks 1999-01-14 2008-02-14 474.000000 weeks 1999-01-14 2008-11-26
8   12.71 weeks 1999-07-03       <NA>         NA weeks 1999-06-15 2008-03-25
9  347.46 weeks 1999-07-16 2008-08-25 475.428571 weeks 1999-07-16 2008-11-10
10  47.02 weeks 1999-03-24 2008-02-26 465.857143 weeks 1999-01-16 2008-10-13
11  27.75 weeks 1999-05-01 1999-09-09  18.714286 weeks 1999-05-01 2008-05-31
12  24.15 weeks 1999-02-01 2008-06-02 487.000000 weeks 1999-02-01 2008-12-08
13  20.33 weeks 1999-06-23 2008-09-23 482.857143 weeks 1999-06-08 2008-12-12
14  25.84 weeks 1999-04-23 2008-09-05 489.000000 weeks 1999-03-13 2008-09-05
15  30.61 weeks 1999-02-12 1999-11-28  41.285714 weeks 1999-02-12 2008-12-14
16   8.47 weeks 1999-03-26 1999-05-16   7.285714 weeks 1999-01-25 1999-08-11
17  26.58 weeks 1999-07-31 2008-05-08 457.714286 weeks 1999-01-05 2008-09-26
18  11.44 weeks 2008-02-21 2008-05-27  13.714286 weeks 2008-01-27 2008-07-13
19  34.74 weeks 1999-10-09       <NA>         NA weeks 1999-04-28 2008-11-11
20  21.18 weeks 1999-07-30 2008-08-09 471.142857 weeks 1999-07-30 2008-09-01
21  38.55 weeks 1999-10-04 2008-09-08 466.000000 weeks 1999-01-04 2008-11-15
22  50.62 weeks 1999-06-03 2008-02-10 453.428571 weeks 1999-03-30 2008-09-29
23  38.34 weeks 1999-04-20 2008-09-13 490.571429 weeks 1999-03-22 2008-10-26
24  16.10 weeks 1999-06-02 2008-09-18 485.142857 weeks 1999-06-02 2008-09-19
25  57.50 weeks 1999-06-09 2008-05-15 466.142857 weeks 1999-02-17 2008-10-31
26  36.85 weeks 1999-03-10 2008-06-24 484.857143 weeks 1999-01-26 2008-12-09
27  44.16 weeks 1999-05-21 2008-07-18 478.000000 weeks 1999-04-01 2008-10-18
28  74.98 weeks 1999-07-14 2008-09-01 476.714286 weeks 1999-01-04 2008-12-23
29 337.72 weeks 1999-08-14 2008-06-25 462.571429 weeks 1999-01-07 2008-12-03
data_summary_plot(dpByCylByCommentsSummaryExample)

make_kable_output(dpByCylByCommentsSummaryExample)
Summary statistics of date of purchase (Date class) by number of cylinders by some random comments.
number of cylinders by some random comments Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4, . date of purchase (Date class) 5 0.00 2003-01-27 252.39 weeks 1999-10-26 54.64 weeks 1999-02-10 2008-02-08 469.285714 weeks 1999-02-10 2008-08-12
6, . date of purchase (Date class) 9 0.00 2004-08-21 241.15 weeks 2008-04-02 44.27 weeks 1999-08-28 2008-06-18 459.571429 weeks 1999-07-14 2008-10-28
8, . date of purchase (Date class) 10 9.09 2004-11-28 246.03 weeks 2008-02-07 61.53 weeks 1999-10-05 2008-09-06 465.571429 weeks 1999-01-13 2008-11-27
4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (Date class) 9 0.00 2002-08-10 241.71 weeks 1999-09-12 38.34 weeks 1999-03-15 2008-05-25 479.857143 weeks 1999-03-08 2008-12-23
6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (Date class) 7 12.50 2004-08-16 254.96 weeks 2008-05-13 31.13 weeks 1999-06-07 2008-08-02 477.714286 weeks 1999-03-19 2008-10-07
8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (Date class) 4 0.00 2004-01-07 274.68 weeks 2004-02-23 342.16 weeks 1999-02-03 2008-06-12 488.142857 weeks 1999-02-03 2008-09-09
4, Does it also fly? date of purchase (Date class) 5 0.00 2002-12-14 265.47 weeks 1999-08-06 43.21 weeks 1999-01-14 2008-02-14 474.000000 weeks 1999-01-14 2008-11-26
6, Does it also fly? date of purchase (Date class) 4 42.86 2001-09-28 225.84 weeks 1999-08-23 12.71 weeks 1999-07-03 NA NA weeks 1999-06-15 2008-03-25
8, Does it also fly? date of purchase (Date class) 4 0.00 2004-03-25 272.68 weeks 2004-04-06 347.46 weeks 1999-07-16 2008-08-25 475.428571 weeks 1999-07-16 2008-11-10
4, Does it come in green? date of purchase (Date class) 15 0.00 2003-07-23 243.88 weeks 1999-08-26 47.02 weeks 1999-03-24 2008-02-26 465.857143 weeks 1999-01-16 2008-10-13
6, Does it come in green? date of purchase (Date class) 3 0.00 2002-06-23 268.42 weeks 1999-09-09 27.75 weeks 1999-05-01 1999-09-09 18.714286 weeks 1999-05-01 2008-05-31
8, Does it come in green? date of purchase (Date class) 5 0.00 2006-07-09 217.62 weeks 2008-02-09 24.15 weeks 1999-02-01 2008-06-02 487.000000 weeks 1999-02-01 2008-12-08
4, I like this car! date of purchase (Date class) 8 11.11 2005-04-06 247.72 weeks 2008-07-29 20.33 weeks 1999-06-23 2008-09-23 482.857143 weeks 1999-06-08 2008-12-12
6, I like this car! date of purchase (Date class) 7 22.22 2002-01-30 232.78 weeks 1999-08-23 25.84 weeks 1999-04-23 2008-09-05 489.000000 weeks 1999-03-13 2008-09-05
8, I like this car! date of purchase (Date class) 4 0.00 2001-11-20 246.39 weeks 1999-09-27 30.61 weeks 1999-02-12 1999-11-28 41.285714 weeks 1999-02-12 2008-12-14
4, Meh. date of purchase (Date class) 6 0.00 1999-05-01 9.86 weeks 1999-04-25 8.47 weeks 1999-03-26 1999-05-16 7.285714 weeks 1999-01-25 1999-08-11
6, Meh. date of purchase (Date class) 6 0.00 2005-06-05 248.14 weeks 2008-04-27 26.58 weeks 1999-07-31 2008-05-08 457.714286 weeks 1999-01-05 2008-09-26
8, Meh. date of purchase (Date class) 5 16.67 2008-04-14 9.80 weeks 2008-04-15 11.44 weeks 2008-02-21 2008-05-27 13.714286 weeks 2008-01-27 2008-07-13
4, Missing date of purchase (Date class) 3 50.00 2002-08-26 280.92 weeks 1999-10-09 34.74 weeks 1999-10-09 NA NA weeks 1999-04-28 2008-11-11
6, Missing date of purchase (Date class) 5 0.00 2004-12-23 255.73 weeks 2008-05-24 21.18 weeks 1999-07-30 2008-08-09 471.142857 weeks 1999-07-30 2008-09-01
8, Missing date of purchase (Date class) 14 0.00 2005-11-13 226.66 weeks 2008-04-02 38.55 weeks 1999-10-04 2008-09-08 466.000000 weeks 1999-01-04 2008-11-15
4, This is the worst car ever! date of purchase (Date class) 7 0.00 2003-05-28 247.48 weeks 1999-11-24 50.62 weeks 1999-06-03 2008-02-10 453.428571 weeks 1999-03-30 2008-09-29
6, This is the worst car ever! date of purchase (Date class) 9 10.00 2002-08-03 237.70 weeks 1999-10-18 38.34 weeks 1999-04-20 2008-09-13 490.571429 weeks 1999-03-22 2008-10-26
8, This is the worst car ever! date of purchase (Date class) 5 0.00 2006-09-25 213.60 weeks 2008-07-04 16.10 weeks 1999-06-02 2008-09-18 485.142857 weeks 1999-06-02 2008-09-19
4, want cheese flavoured cars. date of purchase (Date class) 10 9.09 2003-02-13 238.91 weeks 1999-12-10 57.50 weeks 1999-06-09 2008-05-15 466.142857 weeks 1999-02-17 2008-10-31
6, want cheese flavoured cars. date of purchase (Date class) 13 0.00 2002-04-09 231.98 weeks 1999-08-31 36.85 weeks 1999-03-10 2008-06-24 484.857143 weeks 1999-01-26 2008-12-09
8, want cheese flavoured cars. date of purchase (Date class) 8 11.11 2005-01-02 240.53 weeks 2008-02-06 44.16 weeks 1999-05-21 2008-07-18 478.000000 weeks 1999-04-01 2008-10-18
Overall date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24 74.98 weeks 1999-07-14 2008-09-01 476.714286 weeks 1999-01-04 2008-12-23
R NA Value date of purchase (Date class) 20 16.67 2003-12-06 236.95 weeks 2003-12-24 337.72 weeks 1999-08-14 2008-06-25 462.571429 weeks 1999-01-07 2008-12-03
make_complete_output(dpByCylByCommentsSummaryExample)
Summary statistics of date of purchase (Date class) by number of cylinders by some random comments.
number of cylinders by some random comments Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4, . date of purchase (Date class) 5 0.00 2003-01-27 252.39 weeks 1999-10-26 54.64 weeks 1999-02-10 2008-02-08 469.285714 weeks 1999-02-10 2008-08-12
6, . date of purchase (Date class) 9 0.00 2004-08-21 241.15 weeks 2008-04-02 44.27 weeks 1999-08-28 2008-06-18 459.571429 weeks 1999-07-14 2008-10-28
8, . date of purchase (Date class) 10 9.09 2004-11-28 246.03 weeks 2008-02-07 61.53 weeks 1999-10-05 2008-09-06 465.571429 weeks 1999-01-13 2008-11-27
4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (Date class) 9 0.00 2002-08-10 241.71 weeks 1999-09-12 38.34 weeks 1999-03-15 2008-05-25 479.857143 weeks 1999-03-08 2008-12-23
6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (Date class) 7 12.50 2004-08-16 254.96 weeks 2008-05-13 31.13 weeks 1999-06-07 2008-08-02 477.714286 weeks 1999-03-19 2008-10-07
8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (Date class) 4 0.00 2004-01-07 274.68 weeks 2004-02-23 342.16 weeks 1999-02-03 2008-06-12 488.142857 weeks 1999-02-03 2008-09-09
4, Does it also fly? date of purchase (Date class) 5 0.00 2002-12-14 265.47 weeks 1999-08-06 43.21 weeks 1999-01-14 2008-02-14 474.000000 weeks 1999-01-14 2008-11-26
6, Does it also fly? date of purchase (Date class) 4 42.86 2001-09-28 225.84 weeks 1999-08-23 12.71 weeks 1999-07-03 NA NA weeks 1999-06-15 2008-03-25
8, Does it also fly? date of purchase (Date class) 4 0.00 2004-03-25 272.68 weeks 2004-04-06 347.46 weeks 1999-07-16 2008-08-25 475.428571 weeks 1999-07-16 2008-11-10
4, Does it come in green? date of purchase (Date class) 15 0.00 2003-07-23 243.88 weeks 1999-08-26 47.02 weeks 1999-03-24 2008-02-26 465.857143 weeks 1999-01-16 2008-10-13
6, Does it come in green? date of purchase (Date class) 3 0.00 2002-06-23 268.42 weeks 1999-09-09 27.75 weeks 1999-05-01 1999-09-09 18.714286 weeks 1999-05-01 2008-05-31
8, Does it come in green? date of purchase (Date class) 5 0.00 2006-07-09 217.62 weeks 2008-02-09 24.15 weeks 1999-02-01 2008-06-02 487.000000 weeks 1999-02-01 2008-12-08
4, I like this car! date of purchase (Date class) 8 11.11 2005-04-06 247.72 weeks 2008-07-29 20.33 weeks 1999-06-23 2008-09-23 482.857143 weeks 1999-06-08 2008-12-12
6, I like this car! date of purchase (Date class) 7 22.22 2002-01-30 232.78 weeks 1999-08-23 25.84 weeks 1999-04-23 2008-09-05 489.000000 weeks 1999-03-13 2008-09-05
8, I like this car! date of purchase (Date class) 4 0.00 2001-11-20 246.39 weeks 1999-09-27 30.61 weeks 1999-02-12 1999-11-28 41.285714 weeks 1999-02-12 2008-12-14
4, Meh. date of purchase (Date class) 6 0.00 1999-05-01 9.86 weeks 1999-04-25 8.47 weeks 1999-03-26 1999-05-16 7.285714 weeks 1999-01-25 1999-08-11
6, Meh. date of purchase (Date class) 6 0.00 2005-06-05 248.14 weeks 2008-04-27 26.58 weeks 1999-07-31 2008-05-08 457.714286 weeks 1999-01-05 2008-09-26
8, Meh. date of purchase (Date class) 5 16.67 2008-04-14 9.80 weeks 2008-04-15 11.44 weeks 2008-02-21 2008-05-27 13.714286 weeks 2008-01-27 2008-07-13
4, Missing date of purchase (Date class) 3 50.00 2002-08-26 280.92 weeks 1999-10-09 34.74 weeks 1999-10-09 NA NA weeks 1999-04-28 2008-11-11
6, Missing date of purchase (Date class) 5 0.00 2004-12-23 255.73 weeks 2008-05-24 21.18 weeks 1999-07-30 2008-08-09 471.142857 weeks 1999-07-30 2008-09-01
8, Missing date of purchase (Date class) 14 0.00 2005-11-13 226.66 weeks 2008-04-02 38.55 weeks 1999-10-04 2008-09-08 466.000000 weeks 1999-01-04 2008-11-15
4, This is the worst car ever! date of purchase (Date class) 7 0.00 2003-05-28 247.48 weeks 1999-11-24 50.62 weeks 1999-06-03 2008-02-10 453.428571 weeks 1999-03-30 2008-09-29
6, This is the worst car ever! date of purchase (Date class) 9 10.00 2002-08-03 237.70 weeks 1999-10-18 38.34 weeks 1999-04-20 2008-09-13 490.571429 weeks 1999-03-22 2008-10-26
8, This is the worst car ever! date of purchase (Date class) 5 0.00 2006-09-25 213.60 weeks 2008-07-04 16.10 weeks 1999-06-02 2008-09-18 485.142857 weeks 1999-06-02 2008-09-19
4, want cheese flavoured cars. date of purchase (Date class) 10 9.09 2003-02-13 238.91 weeks 1999-12-10 57.50 weeks 1999-06-09 2008-05-15 466.142857 weeks 1999-02-17 2008-10-31
6, want cheese flavoured cars. date of purchase (Date class) 13 0.00 2002-04-09 231.98 weeks 1999-08-31 36.85 weeks 1999-03-10 2008-06-24 484.857143 weeks 1999-01-26 2008-12-09
8, want cheese flavoured cars. date of purchase (Date class) 8 11.11 2005-01-02 240.53 weeks 2008-02-06 44.16 weeks 1999-05-21 2008-07-18 478.000000 weeks 1999-04-01 2008-10-18
Overall date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24 74.98 weeks 1999-07-14 2008-09-01 476.714286 weeks 1999-01-04 2008-12-23
R NA Value date of purchase (Date class) 20 16.67 2003-12-06 236.95 weeks 2003-12-24 337.72 weeks 1999-08-14 2008-06-25 462.571429 weeks 1999-01-07 2008-12-03

Stacked barplot of date of purchase (Date class) by number of cylinders by some random comments.
show(dpltSummaryExample)
                              Label   N P NA                Mean       S Dev
1  date of purchase (POSIXlt class) 234 8.55 2003-11-15 13:01:05 234.3 weeks
                  Med         MAD              25th P              75th P
1 1999-12-16 04:23:30 67.67 weeks 1999-07-17 10:42:00 2008-07-23 16:02:51
             IQR                 Min                 Max
1 470.6033 weeks 1999-01-04 04:59:00 2008-12-23 01:06:02

data_summary_table(dpltSummaryExample)
                              Label   N P NA                Mean       S Dev
1  date of purchase (POSIXlt class) 234 8.55 2003-11-15 13:01:05 234.3 weeks
                  Med         MAD              25th P              75th P
1 1999-12-16 04:23:30 67.67 weeks 1999-07-17 10:42:00 2008-07-23 16:02:51
             IQR                 Min                 Max
1 470.6033 weeks 1999-01-04 04:59:00 2008-12-23 01:06:02
data_summary_plot(dpltSummaryExample)

make_kable_output(dpltSummaryExample)
Summary statistics of date of purchase (POSIXlt class).
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
date of purchase (POSIXlt class) 234 8.55 2003-11-15 13:01:05 234.3 weeks 1999-12-16 04:23:30 67.67 weeks 1999-07-17 10:42:00 2008-07-23 16:02:51 470.6033 weeks 1999-01-04 04:59:00 2008-12-23 01:06:02
make_complete_output(dpltSummaryExample)
Summary statistics of date of purchase (POSIXlt class).
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
date of purchase (POSIXlt class) 234 8.55 2003-11-15 13:01:05 234.3 weeks 1999-12-16 04:23:30 67.67 weeks 1999-07-17 10:42:00 2008-07-23 16:02:51 470.6033 weeks 1999-01-04 04:59:00 2008-12-23 01:06:02

Stacked barplot of date of purchase (Date class).
show(dpltByCylSummaryExample)
  number of cylinders                            Label   N  P NA
1                   4 date of purchase (POSIXlt class)  81  8.64
2                   5 date of purchase (POSIXlt class)   4  0.00
3                   6 date of purchase (POSIXlt class)  79  7.59
4                   8 date of purchase (POSIXlt class)  70 10.00
5             Overall date of purchase (POSIXlt class) 234  8.55
                 Mean        S Dev                 Med         MAD
1 2003-06-07 09:46:09 230.17 weeks 1999-11-21 23:21:30 44.34 weeks
2 2008-06-18 22:25:47  17.06 weeks 2008-06-19 02:08:01 21.71 weeks
3 2002-12-18 08:32:02 231.02 weeks 1999-09-23 08:05:00 38.02 weeks
4 2005-02-25 06:40:15 229.55 weeks 2008-02-28 14:28:40 52.72 weeks
5 2003-11-15 13:01:05 234.30 weeks 1999-12-16 04:23:30 67.67 weeks
               25th P              75th P             IQR                 Min
1 1999-08-17 07:59:00 2008-07-19 06:48:36 465.56444 weeks 1999-02-06 23:51:00
2 2008-02-24 08:01:04 2008-09-16 23:32:21  29.37215 weeks 2008-02-24 08:01:04
3 1999-06-01 05:12:00 2008-06-30 00:50:43 473.83122 weeks 1999-02-02 05:57:00
4 1999-08-03 00:23:00 2008-08-16 21:36:23 471.69776 weeks 1999-01-04 04:59:00
5 1999-07-17 10:42:00 2008-07-23 16:02:51 470.60326 weeks 1999-01-04 04:59:00
                  Max
1 2008-12-06 16:25:11
2 2008-10-12 04:26:02
3 2008-12-23 01:06:02
4 2008-12-15 06:26:36
5 2008-12-23 01:06:02

data_summary_table(dpltByCylSummaryExample)
  number of cylinders                            Label   N  P NA
1                   4 date of purchase (POSIXlt class)  81  8.64
2                   5 date of purchase (POSIXlt class)   4  0.00
3                   6 date of purchase (POSIXlt class)  79  7.59
4                   8 date of purchase (POSIXlt class)  70 10.00
5             Overall date of purchase (POSIXlt class) 234  8.55
                 Mean        S Dev                 Med         MAD
1 2003-06-07 09:46:09 230.17 weeks 1999-11-21 23:21:30 44.34 weeks
2 2008-06-18 22:25:47  17.06 weeks 2008-06-19 02:08:01 21.71 weeks
3 2002-12-18 08:32:02 231.02 weeks 1999-09-23 08:05:00 38.02 weeks
4 2005-02-25 06:40:15 229.55 weeks 2008-02-28 14:28:40 52.72 weeks
5 2003-11-15 13:01:05 234.30 weeks 1999-12-16 04:23:30 67.67 weeks
               25th P              75th P             IQR                 Min
1 1999-08-17 07:59:00 2008-07-19 06:48:36 465.56444 weeks 1999-02-06 23:51:00
2 2008-02-24 08:01:04 2008-09-16 23:32:21  29.37215 weeks 2008-02-24 08:01:04
3 1999-06-01 05:12:00 2008-06-30 00:50:43 473.83122 weeks 1999-02-02 05:57:00
4 1999-08-03 00:23:00 2008-08-16 21:36:23 471.69776 weeks 1999-01-04 04:59:00
5 1999-07-17 10:42:00 2008-07-23 16:02:51 470.60326 weeks 1999-01-04 04:59:00
                  Max
1 2008-12-06 16:25:11
2 2008-10-12 04:26:02
3 2008-12-23 01:06:02
4 2008-12-15 06:26:36
5 2008-12-23 01:06:02
data_summary_plot(dpltByCylSummaryExample)

make_kable_output(dpltByCylSummaryExample)
Summary statistics of date of purchase (POSIXlt class) by number of cylinders.
number of cylinders Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4 date of purchase (POSIXlt class) 81 8.64 2003-06-07 09:46:09 230.17 weeks 1999-11-21 23:21:30 44.34 weeks 1999-08-17 07:59:00 2008-07-19 06:48:36 465.56444 weeks 1999-02-06 23:51:00 2008-12-06 16:25:11
5 date of purchase (POSIXlt class) 4 0.00 2008-06-18 22:25:47 17.06 weeks 2008-06-19 02:08:01 21.71 weeks 2008-02-24 08:01:04 2008-09-16 23:32:21 29.37215 weeks 2008-02-24 08:01:04 2008-10-12 04:26:02
6 date of purchase (POSIXlt class) 79 7.59 2002-12-18 08:32:02 231.02 weeks 1999-09-23 08:05:00 38.02 weeks 1999-06-01 05:12:00 2008-06-30 00:50:43 473.83122 weeks 1999-02-02 05:57:00 2008-12-23 01:06:02
8 date of purchase (POSIXlt class) 70 10.00 2005-02-25 06:40:15 229.55 weeks 2008-02-28 14:28:40 52.72 weeks 1999-08-03 00:23:00 2008-08-16 21:36:23 471.69776 weeks 1999-01-04 04:59:00 2008-12-15 06:26:36
Overall date of purchase (POSIXlt class) 234 8.55 2003-11-15 13:01:05 234.30 weeks 1999-12-16 04:23:30 67.67 weeks 1999-07-17 10:42:00 2008-07-23 16:02:51 470.60326 weeks 1999-01-04 04:59:00 2008-12-23 01:06:02
make_complete_output(dpltByCylSummaryExample)
Summary statistics of date of purchase (POSIXlt class) by number of cylinders.
number of cylinders Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4 date of purchase (POSIXlt class) 81 8.64 2003-06-07 09:46:09 230.17 weeks 1999-11-21 23:21:30 44.34 weeks 1999-08-17 07:59:00 2008-07-19 06:48:36 465.56444 weeks 1999-02-06 23:51:00 2008-12-06 16:25:11
5 date of purchase (POSIXlt class) 4 0.00 2008-06-18 22:25:47 17.06 weeks 2008-06-19 02:08:01 21.71 weeks 2008-02-24 08:01:04 2008-09-16 23:32:21 29.37215 weeks 2008-02-24 08:01:04 2008-10-12 04:26:02
6 date of purchase (POSIXlt class) 79 7.59 2002-12-18 08:32:02 231.02 weeks 1999-09-23 08:05:00 38.02 weeks 1999-06-01 05:12:00 2008-06-30 00:50:43 473.83122 weeks 1999-02-02 05:57:00 2008-12-23 01:06:02
8 date of purchase (POSIXlt class) 70 10.00 2005-02-25 06:40:15 229.55 weeks 2008-02-28 14:28:40 52.72 weeks 1999-08-03 00:23:00 2008-08-16 21:36:23 471.69776 weeks 1999-01-04 04:59:00 2008-12-15 06:26:36
Overall date of purchase (POSIXlt class) 234 8.55 2003-11-15 13:01:05 234.30 weeks 1999-12-16 04:23:30 67.67 weeks 1999-07-17 10:42:00 2008-07-23 16:02:51 470.60326 weeks 1999-01-04 04:59:00 2008-12-23 01:06:02

Stacked barplot of date of purchase (Date class) by number of cylinders.
show(dpltByCylByCommentsSummaryExample)
         number of cylinders by some random comments
1                                               4, .
2                                               6, .
3                                               8, .
4  4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
5  6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
6  8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
7                               4, Does it also fly?
8                               6, Does it also fly?
9                               8, Does it also fly?
10                         4, Does it come in green?
11                         6, Does it come in green?
12                         8, Does it come in green?
13                               4, I like this car!
14                               6, I like this car!
15                               8, I like this car!
16                                           4, Meh.
17                                           6, Meh.
18                                           8, Meh.
19                                        4, Missing
20                                        6, Missing
21                                        8, Missing
22                    4, This is the worst car ever!
23                    6, This is the worst car ever!
24                    8, This is the worst car ever!
25                    4, want cheese flavoured cars.
26                    6, want cheese flavoured cars.
27                    8, want cheese flavoured cars.
28                                           Overall
29                                        R NA Value
                              Label   N  P NA                Mean        S Dev
1  date of purchase (POSIXlt class)   5  0.00 2002-12-26 13:38:31 260.08 weeks
2  date of purchase (POSIXlt class)   9 11.11 2003-12-31 07:58:18 247.12 weeks
3  date of purchase (POSIXlt class)  11  0.00 2004-05-29 02:24:54 245.48 weeks
4  date of purchase (POSIXlt class)   9  0.00 2002-06-23 10:51:45 223.34 weeks
5  date of purchase (POSIXlt class)   8 12.50 2004-07-24 21:46:13 261.15 weeks
6  date of purchase (POSIXlt class)   4 50.00 2008-05-14 06:42:44   2.05 weeks
7  date of purchase (POSIXlt class)   5  0.00 2003-03-07 13:02:00 254.76 weeks
8  date of purchase (POSIXlt class)   7 14.29 2000-12-31 00:40:43 201.17 weeks
9  date of purchase (POSIXlt class)   4  0.00 2003-12-13 22:25:46 278.25 weeks
10 date of purchase (POSIXlt class)  15  6.67 2003-06-16 07:56:21 236.42 weeks
11 date of purchase (POSIXlt class)   3  0.00 2002-06-30 09:12:42 270.33 weeks
12 date of purchase (POSIXlt class)   5  0.00 2006-10-07 04:49:16 212.99 weeks
13 date of purchase (POSIXlt class)  10  0.00 2004-11-13 07:26:51 239.01 weeks
14 date of purchase (POSIXlt class)   9  0.00 2001-07-09 08:24:32 208.13 weeks
15 date of purchase (POSIXlt class)   4  0.00 2001-07-01 16:33:59 239.79 weeks
16 date of purchase (POSIXlt class)   6  0.00 1999-08-25 13:01:40   9.25 weeks
17 date of purchase (POSIXlt class)   6  0.00 2005-06-27 06:16:57 237.83 weeks
18 date of purchase (POSIXlt class)   6 16.67 2008-04-25 10:42:01   7.88 weeks
19 date of purchase (POSIXlt class)   6 33.33 2004-02-24 10:35:52 267.91 weeks
20 date of purchase (POSIXlt class)   5  0.00 2004-10-25 02:13:27 267.95 weeks
21 date of purchase (POSIXlt class)  14 14.29 2006-04-18 07:42:10 206.29 weeks
22 date of purchase (POSIXlt class)   7  0.00 2003-04-05 22:54:10 245.37 weeks
23 date of purchase (POSIXlt class)  10 10.00 2002-08-17 06:20:29 241.20 weeks
24 date of purchase (POSIXlt class)   5  0.00 2006-08-16 09:39:48 207.93 weeks
25 date of purchase (POSIXlt class)  11 36.36 2004-09-23 19:01:28 249.43 weeks
26 date of purchase (POSIXlt class)  13  7.69 2001-10-13 09:39:46 206.72 weeks
27 date of purchase (POSIXlt class)   9 22.22 2004-09-01 04:43:02 260.61 weeks
28 date of purchase (POSIXlt class) 234  8.55 2003-11-15 13:01:05 234.30 weeks
29 date of purchase (POSIXlt class)  24  4.17 2003-05-14 06:30:18 237.27 weeks
                   Med          MAD              25th P              75th P
1  1999-06-24 10:05:00  17.72 weeks 1999-04-01 16:49:00 2008-05-04 14:32:00
2  2004-01-11 07:48:34 340.15 weeks 1999-06-21 15:04:00 2008-05-07 12:07:04
3  2008-01-08 08:48:50  69.28 weeks 1999-06-17 20:51:00 2008-06-16 11:15:19
4  1999-11-10 03:37:00  28.85 weeks 1999-06-26 23:47:00 2008-01-01 21:17:41
5  2008-04-06 05:33:44  50.36 weeks 1999-03-18 09:04:00 2008-09-11 12:16:05
6  2008-05-14 06:42:44   2.15 weeks 2008-05-04 03:11:56                <NA>
7  1999-12-03 14:02:00  46.46 weeks 1999-04-28 07:00:00 2008-02-04 15:09:51
8  1999-05-30 17:24:30  12.40 weeks 1999-05-05 06:29:00 1999-10-26 18:15:00
9  2003-11-02 13:02:39 348.06 weeks 1999-04-03 04:24:00 2008-04-01 22:16:18
10 1999-11-24 15:28:30  39.39 weeks 1999-09-02 06:35:00 2008-07-23 16:02:51
11 1999-08-29 04:43:00  23.66 weeks 1999-05-09 12:09:00 1999-08-29 04:43:00
12 2008-04-16 10:43:47  42.60 weeks 1999-06-27 02:00:00 2008-11-03 12:36:31
13 2008-02-20 02:59:31  43.53 weeks 1999-07-19 02:45:00 2008-06-06 00:16:30
14 1999-09-01 03:08:00  21.11 weeks 1999-05-20 05:21:00 1999-10-17 20:26:00
15 1999-03-21 09:08:00   2.24 weeks 1999-03-03 10:20:00 1999-03-24 14:33:00
16 1999-08-29 00:33:00   6.94 weeks 1999-08-04 17:17:00 1999-09-09 17:07:00
17 2008-05-07 16:52:30  12.18 weeks 1999-10-01 22:39:00 2008-06-02 22:26:13
18 2008-04-22 04:39:45   4.67 weeks 2008-03-31 03:48:18 2008-05-06 11:35:30
19 2004-02-24 04:39:56 343.94 weeks 1999-09-16 13:56:00 2008-08-08 08:13:36
20 2008-07-21 14:26:31   2.15 weeks 1999-02-23 01:03:00 2008-07-24 04:53:54
21 2008-05-04 23:11:45  28.88 weeks 2008-01-15 10:13:33 2008-10-14 03:45:41
22 1999-10-03 20:59:00  40.91 weeks 1999-04-01 16:56:00 2008-02-06 14:44:36
23 1999-09-23 08:05:00  31.28 weeks 1999-04-28 15:16:00 2008-11-24 04:28:26
24 2008-05-16 15:45:50  18.25 weeks 1999-07-03 08:38:00 2008-06-23 14:12:36
25 2008-02-20 02:52:27  51.90 weeks 1999-09-24 23:41:00                <NA>
26 1999-09-17 07:54:30  16.31 weeks 1999-07-02 02:34:00 2008-04-01 22:06:18
27 2008-01-19 02:34:35  67.07 weeks 1999-06-20 14:17:00 2008-11-30 18:38:11
28 1999-12-16 04:23:30  67.67 weeks 1999-07-17 10:42:00 2008-07-23 16:02:51
29 1999-12-02 03:54:00  64.95 weeks 1999-04-07 12:51:00 2008-05-14 11:48:26
                IQR                 Min                 Max
1  474.409028 weeks 1999-04-01 16:49:00 2008-07-19 06:48:36
2  463.268161 weeks 1999-06-01 05:12:00 2008-11-12 17:56:39
3  469.514317 weeks 1999-01-31 21:39:00 2008-11-30 10:47:06
4  444.419711 weeks 1999-02-06 23:51:00 2008-06-22 02:19:06
5  495.013104 weeks 1999-02-02 05:57:00 2008-11-29 23:22:31
6          NA weeks 2008-05-04 03:11:56 2008-05-24 10:13:33
7  457.768834 weeks 1999-04-28 07:00:00 2008-12-06 16:25:11
8   24.927183 weeks 1999-02-28 00:08:00 2008-11-08 20:23:21
9  469.528998 weeks 1999-04-03 04:24:00 2008-11-15 11:13:47
10 463.913477 weeks 1999-05-08 12:54:00 2008-10-21 21:32:53
11  15.955754 weeks 1999-05-09 12:09:00 2008-06-22 10:46:07
12 488.211956 weeks 1999-06-27 02:00:00 2008-12-13 19:57:34
13 463.556696 weeks 1999-05-25 09:23:00 2008-09-27 23:41:44
14  21.518353 weeks 1999-04-06 05:38:00 2008-12-23 01:06:02
15   3.025099 weeks 1999-03-03 10:20:00 2008-05-23 10:39:59
16   5.141865 weeks 1999-05-07 21:04:00 1999-11-12 08:41:00
17 452.427303 weeks 1999-06-17 19:37:00 2008-07-19 03:28:08
18   5.189206 weeks 2008-02-19 04:00:08 2008-07-18 04:26:27
19 464.108889 weeks 1999-09-12 02:50:00 2008-08-08 08:13:36
20 491.302669 weeks 1999-02-23 01:03:00 2008-07-31 17:39:54
21  38.955569 weeks 1999-08-03 00:23:00 2008-12-15 06:26:36
22 461.844107 weeks 1999-03-24 16:04:00 2008-06-16 20:57:55
23 499.655995 weeks 1999-02-22 04:55:00 2008-11-29 02:51:30
24 468.318909 weeks 1999-07-03 08:38:00 2008-08-16 21:36:23
25         NA weeks 1999-07-17 10:42:00 2008-10-22 04:49:26
26 456.687728 weeks 1999-02-02 06:27:00 2008-06-30 00:50:43
27 493.031863 weeks 1999-01-06 16:15:00 2008-11-30 18:38:11
28 470.603259 weeks 1999-01-04 04:59:00 2008-12-23 01:06:02
29 474.993793 weeks 1999-01-04 04:59:00 2008-10-23 19:14:24

data_summary_table(dpltByCylByCommentsSummaryExample)
         number of cylinders by some random comments
1                                               4, .
2                                               6, .
3                                               8, .
4  4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
5  6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
6  8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
7                               4, Does it also fly?
8                               6, Does it also fly?
9                               8, Does it also fly?
10                         4, Does it come in green?
11                         6, Does it come in green?
12                         8, Does it come in green?
13                               4, I like this car!
14                               6, I like this car!
15                               8, I like this car!
16                                           4, Meh.
17                                           6, Meh.
18                                           8, Meh.
19                                        4, Missing
20                                        6, Missing
21                                        8, Missing
22                    4, This is the worst car ever!
23                    6, This is the worst car ever!
24                    8, This is the worst car ever!
25                    4, want cheese flavoured cars.
26                    6, want cheese flavoured cars.
27                    8, want cheese flavoured cars.
28                                           Overall
29                                        R NA Value
                              Label   N  P NA                Mean        S Dev
1  date of purchase (POSIXlt class)   5  0.00 2002-12-26 13:38:31 260.08 weeks
2  date of purchase (POSIXlt class)   9 11.11 2003-12-31 07:58:18 247.12 weeks
3  date of purchase (POSIXlt class)  11  0.00 2004-05-29 02:24:54 245.48 weeks
4  date of purchase (POSIXlt class)   9  0.00 2002-06-23 10:51:45 223.34 weeks
5  date of purchase (POSIXlt class)   8 12.50 2004-07-24 21:46:13 261.15 weeks
6  date of purchase (POSIXlt class)   4 50.00 2008-05-14 06:42:44   2.05 weeks
7  date of purchase (POSIXlt class)   5  0.00 2003-03-07 13:02:00 254.76 weeks
8  date of purchase (POSIXlt class)   7 14.29 2000-12-31 00:40:43 201.17 weeks
9  date of purchase (POSIXlt class)   4  0.00 2003-12-13 22:25:46 278.25 weeks
10 date of purchase (POSIXlt class)  15  6.67 2003-06-16 07:56:21 236.42 weeks
11 date of purchase (POSIXlt class)   3  0.00 2002-06-30 09:12:42 270.33 weeks
12 date of purchase (POSIXlt class)   5  0.00 2006-10-07 04:49:16 212.99 weeks
13 date of purchase (POSIXlt class)  10  0.00 2004-11-13 07:26:51 239.01 weeks
14 date of purchase (POSIXlt class)   9  0.00 2001-07-09 08:24:32 208.13 weeks
15 date of purchase (POSIXlt class)   4  0.00 2001-07-01 16:33:59 239.79 weeks
16 date of purchase (POSIXlt class)   6  0.00 1999-08-25 13:01:40   9.25 weeks
17 date of purchase (POSIXlt class)   6  0.00 2005-06-27 06:16:57 237.83 weeks
18 date of purchase (POSIXlt class)   6 16.67 2008-04-25 10:42:01   7.88 weeks
19 date of purchase (POSIXlt class)   6 33.33 2004-02-24 10:35:52 267.91 weeks
20 date of purchase (POSIXlt class)   5  0.00 2004-10-25 02:13:27 267.95 weeks
21 date of purchase (POSIXlt class)  14 14.29 2006-04-18 07:42:10 206.29 weeks
22 date of purchase (POSIXlt class)   7  0.00 2003-04-05 22:54:10 245.37 weeks
23 date of purchase (POSIXlt class)  10 10.00 2002-08-17 06:20:29 241.20 weeks
24 date of purchase (POSIXlt class)   5  0.00 2006-08-16 09:39:48 207.93 weeks
25 date of purchase (POSIXlt class)  11 36.36 2004-09-23 19:01:28 249.43 weeks
26 date of purchase (POSIXlt class)  13  7.69 2001-10-13 09:39:46 206.72 weeks
27 date of purchase (POSIXlt class)   9 22.22 2004-09-01 04:43:02 260.61 weeks
28 date of purchase (POSIXlt class) 234  8.55 2003-11-15 13:01:05 234.30 weeks
29 date of purchase (POSIXlt class)  24  4.17 2003-05-14 06:30:18 237.27 weeks
                   Med          MAD              25th P              75th P
1  1999-06-24 10:05:00  17.72 weeks 1999-04-01 16:49:00 2008-05-04 14:32:00
2  2004-01-11 07:48:34 340.15 weeks 1999-06-21 15:04:00 2008-05-07 12:07:04
3  2008-01-08 08:48:50  69.28 weeks 1999-06-17 20:51:00 2008-06-16 11:15:19
4  1999-11-10 03:37:00  28.85 weeks 1999-06-26 23:47:00 2008-01-01 21:17:41
5  2008-04-06 05:33:44  50.36 weeks 1999-03-18 09:04:00 2008-09-11 12:16:05
6  2008-05-14 06:42:44   2.15 weeks 2008-05-04 03:11:56                <NA>
7  1999-12-03 14:02:00  46.46 weeks 1999-04-28 07:00:00 2008-02-04 15:09:51
8  1999-05-30 17:24:30  12.40 weeks 1999-05-05 06:29:00 1999-10-26 18:15:00
9  2003-11-02 13:02:39 348.06 weeks 1999-04-03 04:24:00 2008-04-01 22:16:18
10 1999-11-24 15:28:30  39.39 weeks 1999-09-02 06:35:00 2008-07-23 16:02:51
11 1999-08-29 04:43:00  23.66 weeks 1999-05-09 12:09:00 1999-08-29 04:43:00
12 2008-04-16 10:43:47  42.60 weeks 1999-06-27 02:00:00 2008-11-03 12:36:31
13 2008-02-20 02:59:31  43.53 weeks 1999-07-19 02:45:00 2008-06-06 00:16:30
14 1999-09-01 03:08:00  21.11 weeks 1999-05-20 05:21:00 1999-10-17 20:26:00
15 1999-03-21 09:08:00   2.24 weeks 1999-03-03 10:20:00 1999-03-24 14:33:00
16 1999-08-29 00:33:00   6.94 weeks 1999-08-04 17:17:00 1999-09-09 17:07:00
17 2008-05-07 16:52:30  12.18 weeks 1999-10-01 22:39:00 2008-06-02 22:26:13
18 2008-04-22 04:39:45   4.67 weeks 2008-03-31 03:48:18 2008-05-06 11:35:30
19 2004-02-24 04:39:56 343.94 weeks 1999-09-16 13:56:00 2008-08-08 08:13:36
20 2008-07-21 14:26:31   2.15 weeks 1999-02-23 01:03:00 2008-07-24 04:53:54
21 2008-05-04 23:11:45  28.88 weeks 2008-01-15 10:13:33 2008-10-14 03:45:41
22 1999-10-03 20:59:00  40.91 weeks 1999-04-01 16:56:00 2008-02-06 14:44:36
23 1999-09-23 08:05:00  31.28 weeks 1999-04-28 15:16:00 2008-11-24 04:28:26
24 2008-05-16 15:45:50  18.25 weeks 1999-07-03 08:38:00 2008-06-23 14:12:36
25 2008-02-20 02:52:27  51.90 weeks 1999-09-24 23:41:00                <NA>
26 1999-09-17 07:54:30  16.31 weeks 1999-07-02 02:34:00 2008-04-01 22:06:18
27 2008-01-19 02:34:35  67.07 weeks 1999-06-20 14:17:00 2008-11-30 18:38:11
28 1999-12-16 04:23:30  67.67 weeks 1999-07-17 10:42:00 2008-07-23 16:02:51
29 1999-12-02 03:54:00  64.95 weeks 1999-04-07 12:51:00 2008-05-14 11:48:26
                IQR                 Min                 Max
1  474.409028 weeks 1999-04-01 16:49:00 2008-07-19 06:48:36
2  463.268161 weeks 1999-06-01 05:12:00 2008-11-12 17:56:39
3  469.514317 weeks 1999-01-31 21:39:00 2008-11-30 10:47:06
4  444.419711 weeks 1999-02-06 23:51:00 2008-06-22 02:19:06
5  495.013104 weeks 1999-02-02 05:57:00 2008-11-29 23:22:31
6          NA weeks 2008-05-04 03:11:56 2008-05-24 10:13:33
7  457.768834 weeks 1999-04-28 07:00:00 2008-12-06 16:25:11
8   24.927183 weeks 1999-02-28 00:08:00 2008-11-08 20:23:21
9  469.528998 weeks 1999-04-03 04:24:00 2008-11-15 11:13:47
10 463.913477 weeks 1999-05-08 12:54:00 2008-10-21 21:32:53
11  15.955754 weeks 1999-05-09 12:09:00 2008-06-22 10:46:07
12 488.211956 weeks 1999-06-27 02:00:00 2008-12-13 19:57:34
13 463.556696 weeks 1999-05-25 09:23:00 2008-09-27 23:41:44
14  21.518353 weeks 1999-04-06 05:38:00 2008-12-23 01:06:02
15   3.025099 weeks 1999-03-03 10:20:00 2008-05-23 10:39:59
16   5.141865 weeks 1999-05-07 21:04:00 1999-11-12 08:41:00
17 452.427303 weeks 1999-06-17 19:37:00 2008-07-19 03:28:08
18   5.189206 weeks 2008-02-19 04:00:08 2008-07-18 04:26:27
19 464.108889 weeks 1999-09-12 02:50:00 2008-08-08 08:13:36
20 491.302669 weeks 1999-02-23 01:03:00 2008-07-31 17:39:54
21  38.955569 weeks 1999-08-03 00:23:00 2008-12-15 06:26:36
22 461.844107 weeks 1999-03-24 16:04:00 2008-06-16 20:57:55
23 499.655995 weeks 1999-02-22 04:55:00 2008-11-29 02:51:30
24 468.318909 weeks 1999-07-03 08:38:00 2008-08-16 21:36:23
25         NA weeks 1999-07-17 10:42:00 2008-10-22 04:49:26
26 456.687728 weeks 1999-02-02 06:27:00 2008-06-30 00:50:43
27 493.031863 weeks 1999-01-06 16:15:00 2008-11-30 18:38:11
28 470.603259 weeks 1999-01-04 04:59:00 2008-12-23 01:06:02
29 474.993793 weeks 1999-01-04 04:59:00 2008-10-23 19:14:24
data_summary_plot(dpltByCylByCommentsSummaryExample)

make_kable_output(dpltByCylByCommentsSummaryExample)
Summary statistics of date of purchase (POSIXlt class) by number of cylinders by some random comments.
number of cylinders by some random comments Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4, . date of purchase (POSIXlt class) 5 0.00 2002-12-26 13:38:31 260.08 weeks 1999-06-24 10:05:00 17.72 weeks 1999-04-01 16:49:00 2008-05-04 14:32:00 474.409028 weeks 1999-04-01 16:49:00 2008-07-19 06:48:36
6, . date of purchase (POSIXlt class) 9 11.11 2003-12-31 07:58:18 247.12 weeks 2004-01-11 07:48:34 340.15 weeks 1999-06-21 15:04:00 2008-05-07 12:07:04 463.268161 weeks 1999-06-01 05:12:00 2008-11-12 17:56:39
8, . date of purchase (POSIXlt class) 11 0.00 2004-05-29 02:24:54 245.48 weeks 2008-01-08 08:48:50 69.28 weeks 1999-06-17 20:51:00 2008-06-16 11:15:19 469.514317 weeks 1999-01-31 21:39:00 2008-11-30 10:47:06
4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (POSIXlt class) 9 0.00 2002-06-23 10:51:45 223.34 weeks 1999-11-10 03:37:00 28.85 weeks 1999-06-26 23:47:00 2008-01-01 21:17:41 444.419711 weeks 1999-02-06 23:51:00 2008-06-22 02:19:06
6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (POSIXlt class) 8 12.50 2004-07-24 21:46:13 261.15 weeks 2008-04-06 05:33:44 50.36 weeks 1999-03-18 09:04:00 2008-09-11 12:16:05 495.013103 weeks 1999-02-02 05:57:00 2008-11-29 23:22:31
8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (POSIXlt class) 4 50.00 2008-05-14 06:42:44 2.05 weeks 2008-05-14 06:42:44 2.15 weeks 2008-05-04 03:11:56 NA NA weeks 2008-05-04 03:11:56 2008-05-24 10:13:33
4, Does it also fly? date of purchase (POSIXlt class) 5 0.00 2003-03-07 13:02:00 254.76 weeks 1999-12-03 14:02:00 46.46 weeks 1999-04-28 07:00:00 2008-02-04 15:09:51 457.768834 weeks 1999-04-28 07:00:00 2008-12-06 16:25:11
6, Does it also fly? date of purchase (POSIXlt class) 7 14.29 2000-12-31 00:40:43 201.17 weeks 1999-05-30 17:24:30 12.40 weeks 1999-05-05 06:29:00 1999-10-26 18:15:00 24.927183 weeks 1999-02-28 00:08:00 2008-11-08 20:23:21
8, Does it also fly? date of purchase (POSIXlt class) 4 0.00 2003-12-13 22:25:46 278.25 weeks 2003-11-02 13:02:39 348.06 weeks 1999-04-03 04:24:00 2008-04-01 22:16:18 469.528998 weeks 1999-04-03 04:24:00 2008-11-15 11:13:47
4, Does it come in green? date of purchase (POSIXlt class) 15 6.67 2003-06-16 07:56:21 236.42 weeks 1999-11-24 15:28:30 39.39 weeks 1999-09-02 06:35:00 2008-07-23 16:02:51 463.913477 weeks 1999-05-08 12:54:00 2008-10-21 21:32:53
6, Does it come in green? date of purchase (POSIXlt class) 3 0.00 2002-06-30 09:12:42 270.33 weeks 1999-08-29 04:43:00 23.66 weeks 1999-05-09 12:09:00 1999-08-29 04:43:00 15.955754 weeks 1999-05-09 12:09:00 2008-06-22 10:46:07
8, Does it come in green? date of purchase (POSIXlt class) 5 0.00 2006-10-07 04:49:16 212.99 weeks 2008-04-16 10:43:47 42.60 weeks 1999-06-27 02:00:00 2008-11-03 12:36:31 488.211956 weeks 1999-06-27 02:00:00 2008-12-13 19:57:34
4, I like this car! date of purchase (POSIXlt class) 10 0.00 2004-11-13 07:26:51 239.01 weeks 2008-02-20 02:59:31 43.53 weeks 1999-07-19 02:45:00 2008-06-06 00:16:30 463.556696 weeks 1999-05-25 09:23:00 2008-09-27 23:41:44
6, I like this car! date of purchase (POSIXlt class) 9 0.00 2001-07-09 08:24:32 208.13 weeks 1999-09-01 03:08:00 21.11 weeks 1999-05-20 05:21:00 1999-10-17 20:26:00 21.518353 weeks 1999-04-06 05:38:00 2008-12-23 01:06:02
8, I like this car! date of purchase (POSIXlt class) 4 0.00 2001-07-01 16:33:59 239.79 weeks 1999-03-21 09:08:00 2.24 weeks 1999-03-03 10:20:00 1999-03-24 14:33:00 3.025099 weeks 1999-03-03 10:20:00 2008-05-23 10:39:59
4, Meh. date of purchase (POSIXlt class) 6 0.00 1999-08-25 13:01:40 9.25 weeks 1999-08-29 00:33:00 6.94 weeks 1999-08-04 17:17:00 1999-09-09 17:07:00 5.141865 weeks 1999-05-07 21:04:00 1999-11-12 08:41:00
6, Meh. date of purchase (POSIXlt class) 6 0.00 2005-06-27 06:16:57 237.83 weeks 2008-05-07 16:52:30 12.18 weeks 1999-10-01 22:39:00 2008-06-02 22:26:13 452.427303 weeks 1999-06-17 19:37:00 2008-07-19 03:28:08
8, Meh. date of purchase (POSIXlt class) 6 16.67 2008-04-25 10:42:01 7.88 weeks 2008-04-22 04:39:45 4.67 weeks 2008-03-31 03:48:18 2008-05-06 11:35:30 5.189206 weeks 2008-02-19 04:00:08 2008-07-18 04:26:27
4, Missing date of purchase (POSIXlt class) 6 33.33 2004-02-24 10:35:52 267.91 weeks 2004-02-24 04:39:56 343.94 weeks 1999-09-16 13:56:00 2008-08-08 08:13:36 464.108889 weeks 1999-09-12 02:50:00 2008-08-08 08:13:36
6, Missing date of purchase (POSIXlt class) 5 0.00 2004-10-25 02:13:27 267.95 weeks 2008-07-21 14:26:31 2.15 weeks 1999-02-23 01:03:00 2008-07-24 04:53:54 491.302669 weeks 1999-02-23 01:03:00 2008-07-31 17:39:54
8, Missing date of purchase (POSIXlt class) 14 14.29 2006-04-18 07:42:10 206.29 weeks 2008-05-04 23:11:45 28.88 weeks 2008-01-15 10:13:33 2008-10-14 03:45:41 38.955569 weeks 1999-08-03 00:23:00 2008-12-15 06:26:36
4, This is the worst car ever! date of purchase (POSIXlt class) 7 0.00 2003-04-05 22:54:10 245.37 weeks 1999-10-03 20:59:00 40.91 weeks 1999-04-01 16:56:00 2008-02-06 14:44:36 461.844107 weeks 1999-03-24 16:04:00 2008-06-16 20:57:55
6, This is the worst car ever! date of purchase (POSIXlt class) 10 10.00 2002-08-17 06:20:29 241.20 weeks 1999-09-23 08:05:00 31.28 weeks 1999-04-28 15:16:00 2008-11-24 04:28:26 499.655995 weeks 1999-02-22 04:55:00 2008-11-29 02:51:30
8, This is the worst car ever! date of purchase (POSIXlt class) 5 0.00 2006-08-16 09:39:48 207.93 weeks 2008-05-16 15:45:50 18.25 weeks 1999-07-03 08:38:00 2008-06-23 14:12:36 468.318909 weeks 1999-07-03 08:38:00 2008-08-16 21:36:23
4, want cheese flavoured cars. date of purchase (POSIXlt class) 11 36.36 2004-09-23 19:01:28 249.43 weeks 2008-02-20 02:52:27 51.90 weeks 1999-09-24 23:41:00 NA NA weeks 1999-07-17 10:42:00 2008-10-22 04:49:26
6, want cheese flavoured cars. date of purchase (POSIXlt class) 13 7.69 2001-10-13 09:39:46 206.72 weeks 1999-09-17 07:54:30 16.31 weeks 1999-07-02 02:34:00 2008-04-01 22:06:18 456.687728 weeks 1999-02-02 06:27:00 2008-06-30 00:50:43
8, want cheese flavoured cars. date of purchase (POSIXlt class) 9 22.22 2004-09-01 04:43:02 260.61 weeks 2008-01-19 02:34:35 67.07 weeks 1999-06-20 14:17:00 2008-11-30 18:38:11 493.031863 weeks 1999-01-06 16:15:00 2008-11-30 18:38:11
Overall date of purchase (POSIXlt class) 234 8.55 2003-11-15 13:01:05 234.30 weeks 1999-12-16 04:23:30 67.67 weeks 1999-07-17 10:42:00 2008-07-23 16:02:51 470.603259 weeks 1999-01-04 04:59:00 2008-12-23 01:06:02
R NA Value date of purchase (POSIXlt class) 24 4.17 2003-05-14 06:30:18 237.27 weeks 1999-12-02 03:54:00 64.95 weeks 1999-04-07 12:51:00 2008-05-14 11:48:26 474.993793 weeks 1999-01-04 04:59:00 2008-10-23 19:14:24
make_complete_output(dpltByCylByCommentsSummaryExample)
Summary statistics of date of purchase (POSIXlt class) by number of cylinders by some random comments.
number of cylinders by some random comments Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4, . date of purchase (POSIXlt class) 5 0.00 2002-12-26 13:38:31 260.08 weeks 1999-06-24 10:05:00 17.72 weeks 1999-04-01 16:49:00 2008-05-04 14:32:00 474.409028 weeks 1999-04-01 16:49:00 2008-07-19 06:48:36
6, . date of purchase (POSIXlt class) 9 11.11 2003-12-31 07:58:18 247.12 weeks 2004-01-11 07:48:34 340.15 weeks 1999-06-21 15:04:00 2008-05-07 12:07:04 463.268161 weeks 1999-06-01 05:12:00 2008-11-12 17:56:39
8, . date of purchase (POSIXlt class) 11 0.00 2004-05-29 02:24:54 245.48 weeks 2008-01-08 08:48:50 69.28 weeks 1999-06-17 20:51:00 2008-06-16 11:15:19 469.514317 weeks 1999-01-31 21:39:00 2008-11-30 10:47:06
4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (POSIXlt class) 9 0.00 2002-06-23 10:51:45 223.34 weeks 1999-11-10 03:37:00 28.85 weeks 1999-06-26 23:47:00 2008-01-01 21:17:41 444.419711 weeks 1999-02-06 23:51:00 2008-06-22 02:19:06
6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (POSIXlt class) 8 12.50 2004-07-24 21:46:13 261.15 weeks 2008-04-06 05:33:44 50.36 weeks 1999-03-18 09:04:00 2008-09-11 12:16:05 495.013103 weeks 1999-02-02 05:57:00 2008-11-29 23:22:31
8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (POSIXlt class) 4 50.00 2008-05-14 06:42:44 2.05 weeks 2008-05-14 06:42:44 2.15 weeks 2008-05-04 03:11:56 NA NA weeks 2008-05-04 03:11:56 2008-05-24 10:13:33
4, Does it also fly? date of purchase (POSIXlt class) 5 0.00 2003-03-07 13:02:00 254.76 weeks 1999-12-03 14:02:00 46.46 weeks 1999-04-28 07:00:00 2008-02-04 15:09:51 457.768834 weeks 1999-04-28 07:00:00 2008-12-06 16:25:11
6, Does it also fly? date of purchase (POSIXlt class) 7 14.29 2000-12-31 00:40:43 201.17 weeks 1999-05-30 17:24:30 12.40 weeks 1999-05-05 06:29:00 1999-10-26 18:15:00 24.927183 weeks 1999-02-28 00:08:00 2008-11-08 20:23:21
8, Does it also fly? date of purchase (POSIXlt class) 4 0.00 2003-12-13 22:25:46 278.25 weeks 2003-11-02 13:02:39 348.06 weeks 1999-04-03 04:24:00 2008-04-01 22:16:18 469.528998 weeks 1999-04-03 04:24:00 2008-11-15 11:13:47
4, Does it come in green? date of purchase (POSIXlt class) 15 6.67 2003-06-16 07:56:21 236.42 weeks 1999-11-24 15:28:30 39.39 weeks 1999-09-02 06:35:00 2008-07-23 16:02:51 463.913477 weeks 1999-05-08 12:54:00 2008-10-21 21:32:53
6, Does it come in green? date of purchase (POSIXlt class) 3 0.00 2002-06-30 09:12:42 270.33 weeks 1999-08-29 04:43:00 23.66 weeks 1999-05-09 12:09:00 1999-08-29 04:43:00 15.955754 weeks 1999-05-09 12:09:00 2008-06-22 10:46:07
8, Does it come in green? date of purchase (POSIXlt class) 5 0.00 2006-10-07 04:49:16 212.99 weeks 2008-04-16 10:43:47 42.60 weeks 1999-06-27 02:00:00 2008-11-03 12:36:31 488.211956 weeks 1999-06-27 02:00:00 2008-12-13 19:57:34
4, I like this car! date of purchase (POSIXlt class) 10 0.00 2004-11-13 07:26:51 239.01 weeks 2008-02-20 02:59:31 43.53 weeks 1999-07-19 02:45:00 2008-06-06 00:16:30 463.556696 weeks 1999-05-25 09:23:00 2008-09-27 23:41:44
6, I like this car! date of purchase (POSIXlt class) 9 0.00 2001-07-09 08:24:32 208.13 weeks 1999-09-01 03:08:00 21.11 weeks 1999-05-20 05:21:00 1999-10-17 20:26:00 21.518353 weeks 1999-04-06 05:38:00 2008-12-23 01:06:02
8, I like this car! date of purchase (POSIXlt class) 4 0.00 2001-07-01 16:33:59 239.79 weeks 1999-03-21 09:08:00 2.24 weeks 1999-03-03 10:20:00 1999-03-24 14:33:00 3.025099 weeks 1999-03-03 10:20:00 2008-05-23 10:39:59
4, Meh. date of purchase (POSIXlt class) 6 0.00 1999-08-25 13:01:40 9.25 weeks 1999-08-29 00:33:00 6.94 weeks 1999-08-04 17:17:00 1999-09-09 17:07:00 5.141865 weeks 1999-05-07 21:04:00 1999-11-12 08:41:00
6, Meh. date of purchase (POSIXlt class) 6 0.00 2005-06-27 06:16:57 237.83 weeks 2008-05-07 16:52:30 12.18 weeks 1999-10-01 22:39:00 2008-06-02 22:26:13 452.427303 weeks 1999-06-17 19:37:00 2008-07-19 03:28:08
8, Meh. date of purchase (POSIXlt class) 6 16.67 2008-04-25 10:42:01 7.88 weeks 2008-04-22 04:39:45 4.67 weeks 2008-03-31 03:48:18 2008-05-06 11:35:30 5.189206 weeks 2008-02-19 04:00:08 2008-07-18 04:26:27
4, Missing date of purchase (POSIXlt class) 6 33.33 2004-02-24 10:35:52 267.91 weeks 2004-02-24 04:39:56 343.94 weeks 1999-09-16 13:56:00 2008-08-08 08:13:36 464.108889 weeks 1999-09-12 02:50:00 2008-08-08 08:13:36
6, Missing date of purchase (POSIXlt class) 5 0.00 2004-10-25 02:13:27 267.95 weeks 2008-07-21 14:26:31 2.15 weeks 1999-02-23 01:03:00 2008-07-24 04:53:54 491.302669 weeks 1999-02-23 01:03:00 2008-07-31 17:39:54
8, Missing date of purchase (POSIXlt class) 14 14.29 2006-04-18 07:42:10 206.29 weeks 2008-05-04 23:11:45 28.88 weeks 2008-01-15 10:13:33 2008-10-14 03:45:41 38.955569 weeks 1999-08-03 00:23:00 2008-12-15 06:26:36
4, This is the worst car ever! date of purchase (POSIXlt class) 7 0.00 2003-04-05 22:54:10 245.37 weeks 1999-10-03 20:59:00 40.91 weeks 1999-04-01 16:56:00 2008-02-06 14:44:36 461.844107 weeks 1999-03-24 16:04:00 2008-06-16 20:57:55
6, This is the worst car ever! date of purchase (POSIXlt class) 10 10.00 2002-08-17 06:20:29 241.20 weeks 1999-09-23 08:05:00 31.28 weeks 1999-04-28 15:16:00 2008-11-24 04:28:26 499.655995 weeks 1999-02-22 04:55:00 2008-11-29 02:51:30
8, This is the worst car ever! date of purchase (POSIXlt class) 5 0.00 2006-08-16 09:39:48 207.93 weeks 2008-05-16 15:45:50 18.25 weeks 1999-07-03 08:38:00 2008-06-23 14:12:36 468.318909 weeks 1999-07-03 08:38:00 2008-08-16 21:36:23
4, want cheese flavoured cars. date of purchase (POSIXlt class) 11 36.36 2004-09-23 19:01:28 249.43 weeks 2008-02-20 02:52:27 51.90 weeks 1999-09-24 23:41:00 NA NA weeks 1999-07-17 10:42:00 2008-10-22 04:49:26
6, want cheese flavoured cars. date of purchase (POSIXlt class) 13 7.69 2001-10-13 09:39:46 206.72 weeks 1999-09-17 07:54:30 16.31 weeks 1999-07-02 02:34:00 2008-04-01 22:06:18 456.687728 weeks 1999-02-02 06:27:00 2008-06-30 00:50:43
8, want cheese flavoured cars. date of purchase (POSIXlt class) 9 22.22 2004-09-01 04:43:02 260.61 weeks 2008-01-19 02:34:35 67.07 weeks 1999-06-20 14:17:00 2008-11-30 18:38:11 493.031863 weeks 1999-01-06 16:15:00 2008-11-30 18:38:11
Overall date of purchase (POSIXlt class) 234 8.55 2003-11-15 13:01:05 234.30 weeks 1999-12-16 04:23:30 67.67 weeks 1999-07-17 10:42:00 2008-07-23 16:02:51 470.603259 weeks 1999-01-04 04:59:00 2008-12-23 01:06:02
R NA Value date of purchase (POSIXlt class) 24 4.17 2003-05-14 06:30:18 237.27 weeks 1999-12-02 03:54:00 64.95 weeks 1999-04-07 12:51:00 2008-05-14 11:48:26 474.993793 weeks 1999-01-04 04:59:00 2008-10-23 19:14:24

Stacked barplot of date of purchase (Date class) by number of cylinders by some random comments.
show(dpctSummaryExample)
                              Label   N P NA                Mean        S Dev
1  date of purchase (POSIXct class) 214 8.55 2003-11-21 01:59:50 234.68 weeks
                  Med         MAD              25th P              75th P
1 1999-12-20 21:58:00 71.08 weeks 1999-07-12 06:29:00 2008-08-08 04:44:28
             IQR                 Min                 Max
1 473.5611 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31

data_summary_table(dpctSummaryExample)
                              Label   N P NA                Mean        S Dev
1  date of purchase (POSIXct class) 214 8.55 2003-11-21 01:59:50 234.68 weeks
                  Med         MAD              25th P              75th P
1 1999-12-20 21:58:00 71.08 weeks 1999-07-12 06:29:00 2008-08-08 04:44:28
             IQR                 Min                 Max
1 473.5611 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
data_summary_plot(dpctSummaryExample)

make_kable_output(dpctSummaryExample)
Summary statistics of date of purchase (POSIXct class).
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
date of purchase (POSIXct class) 214 8.55 2003-11-21 01:59:50 234.68 weeks 1999-12-20 21:58:00 71.08 weeks 1999-07-12 06:29:00 2008-08-08 04:44:28 473.5611 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
make_complete_output(dpctSummaryExample)
Summary statistics of date of purchase (POSIXct class).
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
date of purchase (POSIXct class) 214 8.55 2003-11-21 01:59:50 234.68 weeks 1999-12-20 21:58:00 71.08 weeks 1999-07-12 06:29:00 2008-08-08 04:44:28 473.5611 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31

Stacked barplot of date of purchase (Date class).
show(dpctByCylSummaryExample)
  number of cylinders                            Label   N  P NA
1                   4 date of purchase (POSIXct class)  75  7.41
2                   5 date of purchase (POSIXct class)   3 25.00
3                   6 date of purchase (POSIXct class)  72  8.86
4                   8 date of purchase (POSIXct class)  64  8.57
5             Overall date of purchase (POSIXct class) 214  8.55
                 Mean        S Dev                 Med         MAD
1 2003-07-18 01:05:46 234.79 weeks 1999-11-04 12:33:00 59.78 weeks
2 2008-05-03 16:56:21  22.58 weeks 2008-02-11 11:23:10  3.77 weeks
3 2003-02-19 22:01:34 232.07 weeks 1999-11-01 13:42:00 49.24 weeks
4 2004-12-05 01:39:52 230.29 weeks 2008-02-22 08:13:23 42.02 weeks
5 2003-11-21 01:59:50 234.68 weeks 1999-12-20 21:58:00 71.08 weeks
               25th P              75th P            IQR                 Min
1 1999-06-29 06:05:00 2008-06-13 12:42:47 467.4680 weeks 1999-01-19 10:45:00
2 2008-01-24 15:45:51 2008-11-01 21:40:02  40.3149 weeks 2008-01-24 15:45:51
3 1999-06-15 02:46:00 2008-07-22 21:44:19 475.1129 weeks 1999-01-19 05:05:00
4 1999-09-07 08:18:00 2008-07-30 23:21:17 464.2325 weeks 1999-01-14 10:39:00
5 1999-07-12 06:29:00 2008-08-08 04:44:28 473.5611 weeks 1999-01-14 10:39:00
                  Max
1 2008-12-10 14:15:29
2 2008-11-01 21:40:02
3 2008-12-19 04:14:10
4 2008-12-23 02:41:31
5 2008-12-23 02:41:31

data_summary_table(dpctByCylSummaryExample)
  number of cylinders                            Label   N  P NA
1                   4 date of purchase (POSIXct class)  75  7.41
2                   5 date of purchase (POSIXct class)   3 25.00
3                   6 date of purchase (POSIXct class)  72  8.86
4                   8 date of purchase (POSIXct class)  64  8.57
5             Overall date of purchase (POSIXct class) 214  8.55
                 Mean        S Dev                 Med         MAD
1 2003-07-18 01:05:46 234.79 weeks 1999-11-04 12:33:00 59.78 weeks
2 2008-05-03 16:56:21  22.58 weeks 2008-02-11 11:23:10  3.77 weeks
3 2003-02-19 22:01:34 232.07 weeks 1999-11-01 13:42:00 49.24 weeks
4 2004-12-05 01:39:52 230.29 weeks 2008-02-22 08:13:23 42.02 weeks
5 2003-11-21 01:59:50 234.68 weeks 1999-12-20 21:58:00 71.08 weeks
               25th P              75th P            IQR                 Min
1 1999-06-29 06:05:00 2008-06-13 12:42:47 467.4680 weeks 1999-01-19 10:45:00
2 2008-01-24 15:45:51 2008-11-01 21:40:02  40.3149 weeks 2008-01-24 15:45:51
3 1999-06-15 02:46:00 2008-07-22 21:44:19 475.1129 weeks 1999-01-19 05:05:00
4 1999-09-07 08:18:00 2008-07-30 23:21:17 464.2325 weeks 1999-01-14 10:39:00
5 1999-07-12 06:29:00 2008-08-08 04:44:28 473.5611 weeks 1999-01-14 10:39:00
                  Max
1 2008-12-10 14:15:29
2 2008-11-01 21:40:02
3 2008-12-19 04:14:10
4 2008-12-23 02:41:31
5 2008-12-23 02:41:31
data_summary_plot(dpctByCylSummaryExample)

make_kable_output(dpctByCylSummaryExample)
Summary statistics of date of purchase (POSIXct class) by number of cylinders.
number of cylinders Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4 date of purchase (POSIXct class) 75 7.41 2003-07-18 01:05:46 234.79 weeks 1999-11-04 12:33:00 59.78 weeks 1999-06-29 06:05:00 2008-06-13 12:42:47 467.4680 weeks 1999-01-19 10:45:00 2008-12-10 14:15:29
5 date of purchase (POSIXct class) 3 25.00 2008-05-03 16:56:21 22.58 weeks 2008-02-11 11:23:10 3.77 weeks 2008-01-24 15:45:51 2008-11-01 21:40:02 40.3149 weeks 2008-01-24 15:45:51 2008-11-01 21:40:02
6 date of purchase (POSIXct class) 72 8.86 2003-02-19 22:01:34 232.07 weeks 1999-11-01 13:42:00 49.24 weeks 1999-06-15 02:46:00 2008-07-22 21:44:19 475.1129 weeks 1999-01-19 05:05:00 2008-12-19 04:14:10
8 date of purchase (POSIXct class) 64 8.57 2004-12-05 01:39:52 230.29 weeks 2008-02-22 08:13:23 42.02 weeks 1999-09-07 08:18:00 2008-07-30 23:21:17 464.2325 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
Overall date of purchase (POSIXct class) 214 8.55 2003-11-21 01:59:50 234.68 weeks 1999-12-20 21:58:00 71.08 weeks 1999-07-12 06:29:00 2008-08-08 04:44:28 473.5611 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
make_complete_output(dpctByCylSummaryExample)
Summary statistics of date of purchase (POSIXct class) by number of cylinders.
number of cylinders Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4 date of purchase (POSIXct class) 75 7.41 2003-07-18 01:05:46 234.79 weeks 1999-11-04 12:33:00 59.78 weeks 1999-06-29 06:05:00 2008-06-13 12:42:47 467.4680 weeks 1999-01-19 10:45:00 2008-12-10 14:15:29
5 date of purchase (POSIXct class) 3 25.00 2008-05-03 16:56:21 22.58 weeks 2008-02-11 11:23:10 3.77 weeks 2008-01-24 15:45:51 2008-11-01 21:40:02 40.3149 weeks 2008-01-24 15:45:51 2008-11-01 21:40:02
6 date of purchase (POSIXct class) 72 8.86 2003-02-19 22:01:34 232.07 weeks 1999-11-01 13:42:00 49.24 weeks 1999-06-15 02:46:00 2008-07-22 21:44:19 475.1129 weeks 1999-01-19 05:05:00 2008-12-19 04:14:10
8 date of purchase (POSIXct class) 64 8.57 2004-12-05 01:39:52 230.29 weeks 2008-02-22 08:13:23 42.02 weeks 1999-09-07 08:18:00 2008-07-30 23:21:17 464.2325 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
Overall date of purchase (POSIXct class) 214 8.55 2003-11-21 01:59:50 234.68 weeks 1999-12-20 21:58:00 71.08 weeks 1999-07-12 06:29:00 2008-08-08 04:44:28 473.5611 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31

Stacked barplot of date of purchase (Date class) by number of cylinders.
show(dpctByCylByCommentsSummaryExample)
         number of cylinders by some random comments
1                                               4, .
2                                               6, .
3                                               8, .
4  4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
5  6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
6  8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
7                               4, Does it also fly?
8                               6, Does it also fly?
9                               8, Does it also fly?
10                         4, Does it come in green?
11                         6, Does it come in green?
12                         8, Does it come in green?
13                               4, I like this car!
14                               6, I like this car!
15                               8, I like this car!
16                                           4, Meh.
17                                           6, Meh.
18                                           8, Meh.
19                                        4, Missing
20                                        6, Missing
21                                        8, Missing
22                    4, This is the worst car ever!
23                    6, This is the worst car ever!
24                    8, This is the worst car ever!
25                    4, want cheese flavoured cars.
26                    6, want cheese flavoured cars.
27                    8, want cheese flavoured cars.
28                                           Overall
29                                        R NA Value
                              Label   N  P NA                Mean        S Dev
1  date of purchase (POSIXct class)   4 20.00 2003-11-26 01:28:09 264.73 weeks
2  date of purchase (POSIXct class)   5 44.44 2002-12-17 07:22:57 270.27 weeks
3  date of purchase (POSIXct class)  11  0.00 2004-04-24 19:25:05 249.42 weeks
4  date of purchase (POSIXct class)   9  0.00 2002-07-15 12:07:25 241.61 weeks
5  date of purchase (POSIXct class)   8  0.00 2005-03-06 05:47:49 242.11 weeks
6  date of purchase (POSIXct class)   4  0.00 2004-02-11 02:10:30 276.28 weeks
7  date of purchase (POSIXct class)   4 20.00 2001-09-24 21:28:30 248.62 weeks
8  date of purchase (POSIXct class)   7  0.00 2002-01-07 00:42:09 233.05 weeks
9  date of purchase (POSIXct class)   4  0.00 2003-12-10 08:59:56 274.38 weeks
10 date of purchase (POSIXct class)  13 13.33 2004-04-26 18:00:18 242.32 weeks
11 date of purchase (POSIXct class)   3  0.00 2002-05-06 17:40:58 282.96 weeks
12 date of purchase (POSIXct class)   5  0.00 2006-07-04 19:28:09 202.85 weeks
13 date of purchase (POSIXct class)  10  0.00 2004-09-06 11:29:02 236.37 weeks
14 date of purchase (POSIXct class)   8 11.11 2001-09-26 15:59:45 221.03 weeks
15 date of purchase (POSIXct class)   4  0.00 2001-10-11 21:23:10 217.30 weeks
16 date of purchase (POSIXct class)   5 16.67 1999-09-07 16:47:00  10.58 weeks
17 date of purchase (POSIXct class)   6  0.00 2005-07-02 01:16:06 239.72 weeks
18 date of purchase (POSIXct class)   6  0.00 2008-06-20 07:15:14  15.40 weeks
19 date of purchase (POSIXct class)   6  0.00 2005-06-18 04:14:08 242.90 weeks
20 date of purchase (POSIXct class)   5  0.00 2004-11-20 04:13:04 261.49 weeks
21 date of purchase (POSIXct class)  10 28.57 2005-09-03 05:52:51 232.45 weeks
22 date of purchase (POSIXct class)   7  0.00 2003-04-25 22:09:50 251.79 weeks
23 date of purchase (POSIXct class)   9 10.00 2002-08-24 05:35:52 231.70 weeks
24 date of purchase (POSIXct class)   5  0.00 2006-10-12 10:56:39 199.59 weeks
25 date of purchase (POSIXct class)  11  0.00 2003-07-08 17:22:47 243.99 weeks
26 date of purchase (POSIXct class)  13  0.00 2002-04-20 13:43:21 220.53 weeks
27 date of purchase (POSIXct class)   7 22.22 2004-08-05 03:35:48 242.19 weeks
28 date of purchase (POSIXct class) 214  8.55 2003-11-21 01:59:50 234.68 weeks
29 date of purchase (POSIXct class)  22  8.33 2003-03-11 06:54:43 237.23 weeks
                   Med          MAD              25th P              75th P
1  2003-11-06 00:13:47 335.21 weeks 1999-05-08 03:24:00 2008-07-25 04:01:02
2  1999-03-12 05:37:00   2.16 weeks 1999-03-05 23:19:00                <NA>
3  2008-01-13 14:49:44  66.19 weeks 1999-03-07 05:25:00 2008-02-26 03:51:50
4  1999-10-27 08:00:00  52.44 weeks 1999-02-21 16:40:00 2008-06-08 19:04:52
5  2008-02-29 11:08:42  60.19 weeks 1999-07-29 02:43:00 2008-06-11 20:05:41
6  2004-03-28 00:37:14 344.49 weeks 1999-03-12 10:49:00 2008-08-08 04:44:28
7  1999-07-02 14:44:30  29.09 weeks 1999-01-25 04:26:00 2008-11-11 01:59:02
8  1999-06-15 04:11:00  20.52 weeks 1999-04-09 00:55:00 1999-09-20 01:32:00
9  2003-11-28 18:09:45 349.78 weeks 1999-05-04 19:30:00 2008-05-19 17:04:31
10 2008-01-30 06:40:31  65.27 weeks 1999-09-11 11:21:00 2008-08-21 12:07:05
11 1999-04-10 20:07:00   9.15 weeks 1999-02-26 14:09:00 1999-04-10 20:07:00
12 2008-02-18 12:34:57   9.89 weeks 1999-07-23 20:34:00 2008-04-05 06:03:33
13 2008-01-15 18:48:46  24.65 weeks 1999-02-03 02:54:00 2008-03-27 14:15:56
14 1999-09-15 13:26:30  40.56 weeks 1999-02-28 02:12:00 2008-04-21 15:55:24
15 1999-11-08 23:10:00  21.40 weeks 1999-05-23 12:06:00 1999-12-11 11:51:00
16 1999-09-08 16:06:00   4.96 weeks 1999-08-16 06:16:00 1999-09-24 05:34:00
17 2008-03-20 18:16:55  37.37 weeks 1999-10-04 16:53:00 2008-04-10 15:49:22
18 2008-06-07 04:14:04  18.68 weeks 2008-03-11 18:07:43 2008-07-30 23:21:17
19 2008-02-16 06:07:01  51.03 weeks 1999-11-09 01:13:00 2008-03-08 08:49:18
20 2008-03-11 20:09:42  44.33 weeks 1999-04-04 20:26:00 2008-09-01 08:38:40
21 2008-05-08 08:56:16  16.38 weeks 2008-01-19 10:45:49 2008-12-23 02:41:31
22 1999-09-09 16:35:00  40.37 weeks 1999-05-18 04:07:00 2008-04-02 22:50:26
23 1999-11-23 09:40:00  33.31 weeks 1999-06-19 03:37:00 2008-08-22 23:14:44
24 2008-06-06 11:58:47  19.12 weeks 1999-12-12 17:15:00 2008-08-31 05:08:21
25 1999-12-19 19:44:00  70.82 weeks 1999-05-29 22:46:00 2008-03-17 01:58:41
26 1999-10-22 23:01:00  29.77 weeks 1999-06-04 09:07:00 2008-01-23 02:49:05
27 2008-02-12 08:03:24  34.18 weeks 1999-11-17 16:08:00 2008-07-22 17:39:40
28 1999-12-20 21:58:00  71.08 weeks 1999-07-12 06:29:00 2008-08-08 04:44:28
29 1999-10-23 07:22:30  46.90 weeks 1999-06-05 15:30:00 2008-06-03 02:59:13
                IQR                 Min                 Max
1  480.860817 weeks 1999-05-08 03:24:00 2008-07-25 04:01:02
2          NA weeks 1999-03-02 01:18:00 2008-09-16 10:56:27
3  468.276472 weeks 1999-01-21 09:02:00 2008-11-21 02:41:49
4  485.008419 weeks 1999-01-20 00:04:00 2008-11-13 01:54:34
5  462.960584 weeks 1999-04-21 10:44:00 2008-12-19 04:14:10
6  490.957884 weeks 1999-03-12 10:49:00 2008-10-11 21:38:33
7  511.128277 weeks 1999-01-25 04:26:00 2008-11-11 01:59:02
8   23.432242 weeks 1999-02-22 21:00:00 2008-09-26 00:11:30
9  471.842710 weeks 1999-05-04 19:30:00 2008-08-09 06:10:15
10 466.718857 weeks 1999-02-13 09:45:00 2008-12-03 10:17:51
11   6.172421 weeks 1999-02-26 14:09:00 2008-08-09 17:46:55
12 454.056503 weeks 1999-07-23 20:34:00 2008-06-29 10:41:03
13 477.204557 weeks 1999-01-26 06:24:00 2008-06-13 12:42:47
14 477.218591 weeks 1999-01-19 05:05:00 2008-11-05 13:24:43
15  28.861607 weeks 1999-05-23 12:06:00 2008-01-07 00:06:43
16   5.567262 weeks 1999-05-30 06:47:00 1999-12-22 00:12:00
17 444.422259 weeks 1999-05-28 16:38:00 2008-12-15 14:11:55
18  20.173965 weeks 2008-03-05 18:36:33 2008-11-24 17:31:18
19 434.616696 weeks 1999-02-03 20:54:00 2008-12-10 14:15:29
20 491.072685 weeks 1999-04-04 20:26:00 2008-10-07 03:05:02
21  48.380526 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
22 463.254309 weeks 1999-03-03 01:37:00 2008-10-25 00:08:02
23 478.973981 weeks 1999-04-03 22:19:00 2008-09-22 01:07:21
24 454.921959 weeks 1999-12-12 17:15:00 2008-09-04 18:09:48
25 459.161973 weeks 1999-01-19 10:45:00 2008-09-23 15:04:14
26 450.682746 weeks 1999-04-04 00:33:00 2008-10-30 15:10:27
27 452.860284 weeks 1999-02-27 18:31:00 2008-07-22 17:39:40
28 473.561058 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
29 469.354089 weeks 1999-02-12 16:08:00 2008-12-04 06:19:25

data_summary_table(dpctByCylByCommentsSummaryExample)
         number of cylinders by some random comments
1                                               4, .
2                                               6, .
3                                               8, .
4  4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
5  6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
6  8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
7                               4, Does it also fly?
8                               6, Does it also fly?
9                               8, Does it also fly?
10                         4, Does it come in green?
11                         6, Does it come in green?
12                         8, Does it come in green?
13                               4, I like this car!
14                               6, I like this car!
15                               8, I like this car!
16                                           4, Meh.
17                                           6, Meh.
18                                           8, Meh.
19                                        4, Missing
20                                        6, Missing
21                                        8, Missing
22                    4, This is the worst car ever!
23                    6, This is the worst car ever!
24                    8, This is the worst car ever!
25                    4, want cheese flavoured cars.
26                    6, want cheese flavoured cars.
27                    8, want cheese flavoured cars.
28                                           Overall
29                                        R NA Value
                              Label   N  P NA                Mean        S Dev
1  date of purchase (POSIXct class)   4 20.00 2003-11-26 01:28:09 264.73 weeks
2  date of purchase (POSIXct class)   5 44.44 2002-12-17 07:22:57 270.27 weeks
3  date of purchase (POSIXct class)  11  0.00 2004-04-24 19:25:05 249.42 weeks
4  date of purchase (POSIXct class)   9  0.00 2002-07-15 12:07:25 241.61 weeks
5  date of purchase (POSIXct class)   8  0.00 2005-03-06 05:47:49 242.11 weeks
6  date of purchase (POSIXct class)   4  0.00 2004-02-11 02:10:30 276.28 weeks
7  date of purchase (POSIXct class)   4 20.00 2001-09-24 21:28:30 248.62 weeks
8  date of purchase (POSIXct class)   7  0.00 2002-01-07 00:42:09 233.05 weeks
9  date of purchase (POSIXct class)   4  0.00 2003-12-10 08:59:56 274.38 weeks
10 date of purchase (POSIXct class)  13 13.33 2004-04-26 18:00:18 242.32 weeks
11 date of purchase (POSIXct class)   3  0.00 2002-05-06 17:40:58 282.96 weeks
12 date of purchase (POSIXct class)   5  0.00 2006-07-04 19:28:09 202.85 weeks
13 date of purchase (POSIXct class)  10  0.00 2004-09-06 11:29:02 236.37 weeks
14 date of purchase (POSIXct class)   8 11.11 2001-09-26 15:59:45 221.03 weeks
15 date of purchase (POSIXct class)   4  0.00 2001-10-11 21:23:10 217.30 weeks
16 date of purchase (POSIXct class)   5 16.67 1999-09-07 16:47:00  10.58 weeks
17 date of purchase (POSIXct class)   6  0.00 2005-07-02 01:16:06 239.72 weeks
18 date of purchase (POSIXct class)   6  0.00 2008-06-20 07:15:14  15.40 weeks
19 date of purchase (POSIXct class)   6  0.00 2005-06-18 04:14:08 242.90 weeks
20 date of purchase (POSIXct class)   5  0.00 2004-11-20 04:13:04 261.49 weeks
21 date of purchase (POSIXct class)  10 28.57 2005-09-03 05:52:51 232.45 weeks
22 date of purchase (POSIXct class)   7  0.00 2003-04-25 22:09:50 251.79 weeks
23 date of purchase (POSIXct class)   9 10.00 2002-08-24 05:35:52 231.70 weeks
24 date of purchase (POSIXct class)   5  0.00 2006-10-12 10:56:39 199.59 weeks
25 date of purchase (POSIXct class)  11  0.00 2003-07-08 17:22:47 243.99 weeks
26 date of purchase (POSIXct class)  13  0.00 2002-04-20 13:43:21 220.53 weeks
27 date of purchase (POSIXct class)   7 22.22 2004-08-05 03:35:48 242.19 weeks
28 date of purchase (POSIXct class) 214  8.55 2003-11-21 01:59:50 234.68 weeks
29 date of purchase (POSIXct class)  22  8.33 2003-03-11 06:54:43 237.23 weeks
                   Med          MAD              25th P              75th P
1  2003-11-06 00:13:47 335.21 weeks 1999-05-08 03:24:00 2008-07-25 04:01:02
2  1999-03-12 05:37:00   2.16 weeks 1999-03-05 23:19:00                <NA>
3  2008-01-13 14:49:44  66.19 weeks 1999-03-07 05:25:00 2008-02-26 03:51:50
4  1999-10-27 08:00:00  52.44 weeks 1999-02-21 16:40:00 2008-06-08 19:04:52
5  2008-02-29 11:08:42  60.19 weeks 1999-07-29 02:43:00 2008-06-11 20:05:41
6  2004-03-28 00:37:14 344.49 weeks 1999-03-12 10:49:00 2008-08-08 04:44:28
7  1999-07-02 14:44:30  29.09 weeks 1999-01-25 04:26:00 2008-11-11 01:59:02
8  1999-06-15 04:11:00  20.52 weeks 1999-04-09 00:55:00 1999-09-20 01:32:00
9  2003-11-28 18:09:45 349.78 weeks 1999-05-04 19:30:00 2008-05-19 17:04:31
10 2008-01-30 06:40:31  65.27 weeks 1999-09-11 11:21:00 2008-08-21 12:07:05
11 1999-04-10 20:07:00   9.15 weeks 1999-02-26 14:09:00 1999-04-10 20:07:00
12 2008-02-18 12:34:57   9.89 weeks 1999-07-23 20:34:00 2008-04-05 06:03:33
13 2008-01-15 18:48:46  24.65 weeks 1999-02-03 02:54:00 2008-03-27 14:15:56
14 1999-09-15 13:26:30  40.56 weeks 1999-02-28 02:12:00 2008-04-21 15:55:24
15 1999-11-08 23:10:00  21.40 weeks 1999-05-23 12:06:00 1999-12-11 11:51:00
16 1999-09-08 16:06:00   4.96 weeks 1999-08-16 06:16:00 1999-09-24 05:34:00
17 2008-03-20 18:16:55  37.37 weeks 1999-10-04 16:53:00 2008-04-10 15:49:22
18 2008-06-07 04:14:04  18.68 weeks 2008-03-11 18:07:43 2008-07-30 23:21:17
19 2008-02-16 06:07:01  51.03 weeks 1999-11-09 01:13:00 2008-03-08 08:49:18
20 2008-03-11 20:09:42  44.33 weeks 1999-04-04 20:26:00 2008-09-01 08:38:40
21 2008-05-08 08:56:16  16.38 weeks 2008-01-19 10:45:49 2008-12-23 02:41:31
22 1999-09-09 16:35:00  40.37 weeks 1999-05-18 04:07:00 2008-04-02 22:50:26
23 1999-11-23 09:40:00  33.31 weeks 1999-06-19 03:37:00 2008-08-22 23:14:44
24 2008-06-06 11:58:47  19.12 weeks 1999-12-12 17:15:00 2008-08-31 05:08:21
25 1999-12-19 19:44:00  70.82 weeks 1999-05-29 22:46:00 2008-03-17 01:58:41
26 1999-10-22 23:01:00  29.77 weeks 1999-06-04 09:07:00 2008-01-23 02:49:05
27 2008-02-12 08:03:24  34.18 weeks 1999-11-17 16:08:00 2008-07-22 17:39:40
28 1999-12-20 21:58:00  71.08 weeks 1999-07-12 06:29:00 2008-08-08 04:44:28
29 1999-10-23 07:22:30  46.90 weeks 1999-06-05 15:30:00 2008-06-03 02:59:13
                IQR                 Min                 Max
1  480.860817 weeks 1999-05-08 03:24:00 2008-07-25 04:01:02
2          NA weeks 1999-03-02 01:18:00 2008-09-16 10:56:27
3  468.276472 weeks 1999-01-21 09:02:00 2008-11-21 02:41:49
4  485.008419 weeks 1999-01-20 00:04:00 2008-11-13 01:54:34
5  462.960584 weeks 1999-04-21 10:44:00 2008-12-19 04:14:10
6  490.957884 weeks 1999-03-12 10:49:00 2008-10-11 21:38:33
7  511.128277 weeks 1999-01-25 04:26:00 2008-11-11 01:59:02
8   23.432242 weeks 1999-02-22 21:00:00 2008-09-26 00:11:30
9  471.842710 weeks 1999-05-04 19:30:00 2008-08-09 06:10:15
10 466.718857 weeks 1999-02-13 09:45:00 2008-12-03 10:17:51
11   6.172421 weeks 1999-02-26 14:09:00 2008-08-09 17:46:55
12 454.056503 weeks 1999-07-23 20:34:00 2008-06-29 10:41:03
13 477.204557 weeks 1999-01-26 06:24:00 2008-06-13 12:42:47
14 477.218591 weeks 1999-01-19 05:05:00 2008-11-05 13:24:43
15  28.861607 weeks 1999-05-23 12:06:00 2008-01-07 00:06:43
16   5.567262 weeks 1999-05-30 06:47:00 1999-12-22 00:12:00
17 444.422259 weeks 1999-05-28 16:38:00 2008-12-15 14:11:55
18  20.173965 weeks 2008-03-05 18:36:33 2008-11-24 17:31:18
19 434.616696 weeks 1999-02-03 20:54:00 2008-12-10 14:15:29
20 491.072685 weeks 1999-04-04 20:26:00 2008-10-07 03:05:02
21  48.380526 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
22 463.254309 weeks 1999-03-03 01:37:00 2008-10-25 00:08:02
23 478.973981 weeks 1999-04-03 22:19:00 2008-09-22 01:07:21
24 454.921959 weeks 1999-12-12 17:15:00 2008-09-04 18:09:48
25 459.161973 weeks 1999-01-19 10:45:00 2008-09-23 15:04:14
26 450.682746 weeks 1999-04-04 00:33:00 2008-10-30 15:10:27
27 452.860284 weeks 1999-02-27 18:31:00 2008-07-22 17:39:40
28 473.561058 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
29 469.354089 weeks 1999-02-12 16:08:00 2008-12-04 06:19:25
data_summary_plot(dpctByCylByCommentsSummaryExample)

make_kable_output(dpctByCylByCommentsSummaryExample)
Summary statistics of date of purchase (POSIXct class) by number of cylinders by some random comments.
number of cylinders by some random comments Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4, . date of purchase (POSIXct class) 4 20.00 2003-11-26 01:28:09 264.73 weeks 2003-11-06 00:13:47 335.21 weeks 1999-05-08 03:24:00 2008-07-25 04:01:02 480.860817 weeks 1999-05-08 03:24:00 2008-07-25 04:01:02
6, . date of purchase (POSIXct class) 5 44.44 2002-12-17 07:22:57 270.27 weeks 1999-03-12 05:37:00 2.16 weeks 1999-03-05 23:19:00 NA NA weeks 1999-03-02 01:18:00 2008-09-16 10:56:27
8, . date of purchase (POSIXct class) 11 0.00 2004-04-24 19:25:05 249.42 weeks 2008-01-13 14:49:44 66.19 weeks 1999-03-07 05:25:00 2008-02-26 03:51:50 468.276472 weeks 1999-01-21 09:02:00 2008-11-21 02:41:49
4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (POSIXct class) 9 0.00 2002-07-15 12:07:25 241.61 weeks 1999-10-27 08:00:00 52.44 weeks 1999-02-21 16:40:00 2008-06-08 19:04:52 485.008419 weeks 1999-01-20 00:04:00 2008-11-13 01:54:34
6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (POSIXct class) 8 0.00 2005-03-06 05:47:49 242.11 weeks 2008-02-29 11:08:42 60.19 weeks 1999-07-29 02:43:00 2008-06-11 20:05:41 462.960584 weeks 1999-04-21 10:44:00 2008-12-19 04:14:10
8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (POSIXct class) 4 0.00 2004-02-11 02:10:30 276.28 weeks 2004-03-28 00:37:14 344.49 weeks 1999-03-12 10:49:00 2008-08-08 04:44:28 490.957884 weeks 1999-03-12 10:49:00 2008-10-11 21:38:33
4, Does it also fly? date of purchase (POSIXct class) 4 20.00 2001-09-24 21:28:30 248.62 weeks 1999-07-02 14:44:30 29.09 weeks 1999-01-25 04:26:00 2008-11-11 01:59:02 511.128277 weeks 1999-01-25 04:26:00 2008-11-11 01:59:02
6, Does it also fly? date of purchase (POSIXct class) 7 0.00 2002-01-07 00:42:09 233.05 weeks 1999-06-15 04:11:00 20.52 weeks 1999-04-09 00:55:00 1999-09-20 01:32:00 23.432242 weeks 1999-02-22 21:00:00 2008-09-26 00:11:30
8, Does it also fly? date of purchase (POSIXct class) 4 0.00 2003-12-10 08:59:56 274.38 weeks 2003-11-28 18:09:45 349.78 weeks 1999-05-04 19:30:00 2008-05-19 17:04:31 471.842710 weeks 1999-05-04 19:30:00 2008-08-09 06:10:15
4, Does it come in green? date of purchase (POSIXct class) 13 13.33 2004-04-26 18:00:18 242.32 weeks 2008-01-30 06:40:31 65.27 weeks 1999-09-11 11:21:00 2008-08-21 12:07:05 466.718858 weeks 1999-02-13 09:45:00 2008-12-03 10:17:51
6, Does it come in green? date of purchase (POSIXct class) 3 0.00 2002-05-06 17:40:58 282.96 weeks 1999-04-10 20:07:00 9.15 weeks 1999-02-26 14:09:00 1999-04-10 20:07:00 6.172421 weeks 1999-02-26 14:09:00 2008-08-09 17:46:55
8, Does it come in green? date of purchase (POSIXct class) 5 0.00 2006-07-04 19:28:09 202.85 weeks 2008-02-18 12:34:57 9.89 weeks 1999-07-23 20:34:00 2008-04-05 06:03:33 454.056503 weeks 1999-07-23 20:34:00 2008-06-29 10:41:03
4, I like this car! date of purchase (POSIXct class) 10 0.00 2004-09-06 11:29:02 236.37 weeks 2008-01-15 18:48:46 24.65 weeks 1999-02-03 02:54:00 2008-03-27 14:15:56 477.204557 weeks 1999-01-26 06:24:00 2008-06-13 12:42:47
6, I like this car! date of purchase (POSIXct class) 8 11.11 2001-09-26 15:59:45 221.03 weeks 1999-09-15 13:26:30 40.56 weeks 1999-02-28 02:12:00 2008-04-21 15:55:24 477.218591 weeks 1999-01-19 05:05:00 2008-11-05 13:24:43
8, I like this car! date of purchase (POSIXct class) 4 0.00 2001-10-11 21:23:10 217.30 weeks 1999-11-08 23:10:00 21.40 weeks 1999-05-23 12:06:00 1999-12-11 11:51:00 28.861607 weeks 1999-05-23 12:06:00 2008-01-07 00:06:43
4, Meh. date of purchase (POSIXct class) 5 16.67 1999-09-07 16:47:00 10.58 weeks 1999-09-08 16:06:00 4.96 weeks 1999-08-16 06:16:00 1999-09-24 05:34:00 5.567262 weeks 1999-05-30 06:47:00 1999-12-22 00:12:00
6, Meh. date of purchase (POSIXct class) 6 0.00 2005-07-02 01:16:06 239.72 weeks 2008-03-20 18:16:55 37.37 weeks 1999-10-04 16:53:00 2008-04-10 15:49:22 444.422259 weeks 1999-05-28 16:38:00 2008-12-15 14:11:55
8, Meh. date of purchase (POSIXct class) 6 0.00 2008-06-20 07:15:14 15.40 weeks 2008-06-07 04:14:04 18.68 weeks 2008-03-11 18:07:43 2008-07-30 23:21:17 20.173965 weeks 2008-03-05 18:36:33 2008-11-24 17:31:18
4, Missing date of purchase (POSIXct class) 6 0.00 2005-06-18 04:14:08 242.90 weeks 2008-02-16 06:07:01 51.03 weeks 1999-11-09 01:13:00 2008-03-08 08:49:18 434.616696 weeks 1999-02-03 20:54:00 2008-12-10 14:15:29
6, Missing date of purchase (POSIXct class) 5 0.00 2004-11-20 04:13:04 261.49 weeks 2008-03-11 20:09:42 44.33 weeks 1999-04-04 20:26:00 2008-09-01 08:38:40 491.072685 weeks 1999-04-04 20:26:00 2008-10-07 03:05:02
8, Missing date of purchase (POSIXct class) 10 28.57 2005-09-03 05:52:51 232.45 weeks 2008-05-08 08:56:16 16.38 weeks 2008-01-19 10:45:49 2008-12-23 02:41:31 48.380526 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
4, This is the worst car ever! date of purchase (POSIXct class) 7 0.00 2003-04-25 22:09:50 251.79 weeks 1999-09-09 16:35:00 40.37 weeks 1999-05-18 04:07:00 2008-04-02 22:50:26 463.254309 weeks 1999-03-03 01:37:00 2008-10-25 00:08:02
6, This is the worst car ever! date of purchase (POSIXct class) 9 10.00 2002-08-24 05:35:52 231.70 weeks 1999-11-23 09:40:00 33.31 weeks 1999-06-19 03:37:00 2008-08-22 23:14:44 478.973981 weeks 1999-04-03 22:19:00 2008-09-22 01:07:21
8, This is the worst car ever! date of purchase (POSIXct class) 5 0.00 2006-10-12 10:56:39 199.59 weeks 2008-06-06 11:58:47 19.12 weeks 1999-12-12 17:15:00 2008-08-31 05:08:21 454.921959 weeks 1999-12-12 17:15:00 2008-09-04 18:09:48
4, want cheese flavoured cars. date of purchase (POSIXct class) 11 0.00 2003-07-08 17:22:47 243.99 weeks 1999-12-19 19:44:00 70.82 weeks 1999-05-29 22:46:00 2008-03-17 01:58:41 459.161973 weeks 1999-01-19 10:45:00 2008-09-23 15:04:14
6, want cheese flavoured cars. date of purchase (POSIXct class) 13 0.00 2002-04-20 13:43:21 220.53 weeks 1999-10-22 23:01:00 29.77 weeks 1999-06-04 09:07:00 2008-01-23 02:49:05 450.682746 weeks 1999-04-04 00:33:00 2008-10-30 15:10:27
8, want cheese flavoured cars. date of purchase (POSIXct class) 7 22.22 2004-08-05 03:35:48 242.19 weeks 2008-02-12 08:03:24 34.18 weeks 1999-11-17 16:08:00 2008-07-22 17:39:40 452.860284 weeks 1999-02-27 18:31:00 2008-07-22 17:39:40
Overall date of purchase (POSIXct class) 214 8.55 2003-11-21 01:59:50 234.68 weeks 1999-12-20 21:58:00 71.08 weeks 1999-07-12 06:29:00 2008-08-08 04:44:28 473.561058 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
R NA Value date of purchase (POSIXct class) 22 8.33 2003-03-11 06:54:43 237.23 weeks 1999-10-23 07:22:30 46.90 weeks 1999-06-05 15:30:00 2008-06-03 02:59:13 469.354089 weeks 1999-02-12 16:08:00 2008-12-04 06:19:25
make_complete_output(dpctByCylByCommentsSummaryExample)
Summary statistics of date of purchase (POSIXct class) by number of cylinders by some random comments.
number of cylinders by some random comments Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4, . date of purchase (POSIXct class) 4 20.00 2003-11-26 01:28:09 264.73 weeks 2003-11-06 00:13:47 335.21 weeks 1999-05-08 03:24:00 2008-07-25 04:01:02 480.860817 weeks 1999-05-08 03:24:00 2008-07-25 04:01:02
6, . date of purchase (POSIXct class) 5 44.44 2002-12-17 07:22:57 270.27 weeks 1999-03-12 05:37:00 2.16 weeks 1999-03-05 23:19:00 NA NA weeks 1999-03-02 01:18:00 2008-09-16 10:56:27
8, . date of purchase (POSIXct class) 11 0.00 2004-04-24 19:25:05 249.42 weeks 2008-01-13 14:49:44 66.19 weeks 1999-03-07 05:25:00 2008-02-26 03:51:50 468.276472 weeks 1999-01-21 09:02:00 2008-11-21 02:41:49
4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (POSIXct class) 9 0.00 2002-07-15 12:07:25 241.61 weeks 1999-10-27 08:00:00 52.44 weeks 1999-02-21 16:40:00 2008-06-08 19:04:52 485.008419 weeks 1999-01-20 00:04:00 2008-11-13 01:54:34
6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (POSIXct class) 8 0.00 2005-03-06 05:47:49 242.11 weeks 2008-02-29 11:08:42 60.19 weeks 1999-07-29 02:43:00 2008-06-11 20:05:41 462.960584 weeks 1999-04-21 10:44:00 2008-12-19 04:14:10
8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (POSIXct class) 4 0.00 2004-02-11 02:10:30 276.28 weeks 2004-03-28 00:37:14 344.49 weeks 1999-03-12 10:49:00 2008-08-08 04:44:28 490.957884 weeks 1999-03-12 10:49:00 2008-10-11 21:38:33
4, Does it also fly? date of purchase (POSIXct class) 4 20.00 2001-09-24 21:28:30 248.62 weeks 1999-07-02 14:44:30 29.09 weeks 1999-01-25 04:26:00 2008-11-11 01:59:02 511.128277 weeks 1999-01-25 04:26:00 2008-11-11 01:59:02
6, Does it also fly? date of purchase (POSIXct class) 7 0.00 2002-01-07 00:42:09 233.05 weeks 1999-06-15 04:11:00 20.52 weeks 1999-04-09 00:55:00 1999-09-20 01:32:00 23.432242 weeks 1999-02-22 21:00:00 2008-09-26 00:11:30
8, Does it also fly? date of purchase (POSIXct class) 4 0.00 2003-12-10 08:59:56 274.38 weeks 2003-11-28 18:09:45 349.78 weeks 1999-05-04 19:30:00 2008-05-19 17:04:31 471.842710 weeks 1999-05-04 19:30:00 2008-08-09 06:10:15
4, Does it come in green? date of purchase (POSIXct class) 13 13.33 2004-04-26 18:00:18 242.32 weeks 2008-01-30 06:40:31 65.27 weeks 1999-09-11 11:21:00 2008-08-21 12:07:05 466.718858 weeks 1999-02-13 09:45:00 2008-12-03 10:17:51
6, Does it come in green? date of purchase (POSIXct class) 3 0.00 2002-05-06 17:40:58 282.96 weeks 1999-04-10 20:07:00 9.15 weeks 1999-02-26 14:09:00 1999-04-10 20:07:00 6.172421 weeks 1999-02-26 14:09:00 2008-08-09 17:46:55
8, Does it come in green? date of purchase (POSIXct class) 5 0.00 2006-07-04 19:28:09 202.85 weeks 2008-02-18 12:34:57 9.89 weeks 1999-07-23 20:34:00 2008-04-05 06:03:33 454.056503 weeks 1999-07-23 20:34:00 2008-06-29 10:41:03
4, I like this car! date of purchase (POSIXct class) 10 0.00 2004-09-06 11:29:02 236.37 weeks 2008-01-15 18:48:46 24.65 weeks 1999-02-03 02:54:00 2008-03-27 14:15:56 477.204557 weeks 1999-01-26 06:24:00 2008-06-13 12:42:47
6, I like this car! date of purchase (POSIXct class) 8 11.11 2001-09-26 15:59:45 221.03 weeks 1999-09-15 13:26:30 40.56 weeks 1999-02-28 02:12:00 2008-04-21 15:55:24 477.218591 weeks 1999-01-19 05:05:00 2008-11-05 13:24:43
8, I like this car! date of purchase (POSIXct class) 4 0.00 2001-10-11 21:23:10 217.30 weeks 1999-11-08 23:10:00 21.40 weeks 1999-05-23 12:06:00 1999-12-11 11:51:00 28.861607 weeks 1999-05-23 12:06:00 2008-01-07 00:06:43
4, Meh. date of purchase (POSIXct class) 5 16.67 1999-09-07 16:47:00 10.58 weeks 1999-09-08 16:06:00 4.96 weeks 1999-08-16 06:16:00 1999-09-24 05:34:00 5.567262 weeks 1999-05-30 06:47:00 1999-12-22 00:12:00
6, Meh. date of purchase (POSIXct class) 6 0.00 2005-07-02 01:16:06 239.72 weeks 2008-03-20 18:16:55 37.37 weeks 1999-10-04 16:53:00 2008-04-10 15:49:22 444.422259 weeks 1999-05-28 16:38:00 2008-12-15 14:11:55
8, Meh. date of purchase (POSIXct class) 6 0.00 2008-06-20 07:15:14 15.40 weeks 2008-06-07 04:14:04 18.68 weeks 2008-03-11 18:07:43 2008-07-30 23:21:17 20.173965 weeks 2008-03-05 18:36:33 2008-11-24 17:31:18
4, Missing date of purchase (POSIXct class) 6 0.00 2005-06-18 04:14:08 242.90 weeks 2008-02-16 06:07:01 51.03 weeks 1999-11-09 01:13:00 2008-03-08 08:49:18 434.616696 weeks 1999-02-03 20:54:00 2008-12-10 14:15:29
6, Missing date of purchase (POSIXct class) 5 0.00 2004-11-20 04:13:04 261.49 weeks 2008-03-11 20:09:42 44.33 weeks 1999-04-04 20:26:00 2008-09-01 08:38:40 491.072685 weeks 1999-04-04 20:26:00 2008-10-07 03:05:02
8, Missing date of purchase (POSIXct class) 10 28.57 2005-09-03 05:52:51 232.45 weeks 2008-05-08 08:56:16 16.38 weeks 2008-01-19 10:45:49 2008-12-23 02:41:31 48.380526 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
4, This is the worst car ever! date of purchase (POSIXct class) 7 0.00 2003-04-25 22:09:50 251.79 weeks 1999-09-09 16:35:00 40.37 weeks 1999-05-18 04:07:00 2008-04-02 22:50:26 463.254309 weeks 1999-03-03 01:37:00 2008-10-25 00:08:02
6, This is the worst car ever! date of purchase (POSIXct class) 9 10.00 2002-08-24 05:35:52 231.70 weeks 1999-11-23 09:40:00 33.31 weeks 1999-06-19 03:37:00 2008-08-22 23:14:44 478.973981 weeks 1999-04-03 22:19:00 2008-09-22 01:07:21
8, This is the worst car ever! date of purchase (POSIXct class) 5 0.00 2006-10-12 10:56:39 199.59 weeks 2008-06-06 11:58:47 19.12 weeks 1999-12-12 17:15:00 2008-08-31 05:08:21 454.921959 weeks 1999-12-12 17:15:00 2008-09-04 18:09:48
4, want cheese flavoured cars. date of purchase (POSIXct class) 11 0.00 2003-07-08 17:22:47 243.99 weeks 1999-12-19 19:44:00 70.82 weeks 1999-05-29 22:46:00 2008-03-17 01:58:41 459.161973 weeks 1999-01-19 10:45:00 2008-09-23 15:04:14
6, want cheese flavoured cars. date of purchase (POSIXct class) 13 0.00 2002-04-20 13:43:21 220.53 weeks 1999-10-22 23:01:00 29.77 weeks 1999-06-04 09:07:00 2008-01-23 02:49:05 450.682746 weeks 1999-04-04 00:33:00 2008-10-30 15:10:27
8, want cheese flavoured cars. date of purchase (POSIXct class) 7 22.22 2004-08-05 03:35:48 242.19 weeks 2008-02-12 08:03:24 34.18 weeks 1999-11-17 16:08:00 2008-07-22 17:39:40 452.860284 weeks 1999-02-27 18:31:00 2008-07-22 17:39:40
Overall date of purchase (POSIXct class) 214 8.55 2003-11-21 01:59:50 234.68 weeks 1999-12-20 21:58:00 71.08 weeks 1999-07-12 06:29:00 2008-08-08 04:44:28 473.561058 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
R NA Value date of purchase (POSIXct class) 22 8.33 2003-03-11 06:54:43 237.23 weeks 1999-10-23 07:22:30 46.90 weeks 1999-06-05 15:30:00 2008-06-03 02:59:13 469.354089 weeks 1999-02-12 16:08:00 2008-12-04 06:19:25

Stacked barplot of date of purchase (Date class) by number of cylinders by some random comments.
show(rdifftimeSummaryExample)
  
1 
                                                                                                                    Label
1 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
    N  P NA       Mean      S Dev       Med        MAD     25th P      75th P
1 184 21.37 9.76 weeks 5.07 weeks 9.6 weeks 5.12 weeks 6.11 weeks 13.05 weeks
         IQR     Min         Max
1 6.79 weeks 0 weeks 23.49 weeks

data_summary_table(rdifftimeSummaryExample)
  
1 
                                                                                                                    Label
1 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
    N  P NA       Mean      S Dev       Med        MAD     25th P      75th P
1 184 21.37 9.76 weeks 5.07 weeks 9.6 weeks 5.12 weeks 6.11 weeks 13.05 weeks
         IQR     Min         Max
1 6.79 weeks 0 weeks 23.49 weeks
data_summary_plot(rdifftimeSummaryExample)

make_kable_output(rdifftimeSummaryExample)
Summary statistics of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks.
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 184 21.37 9.76 weeks 5.07 weeks 9.6 weeks 5.12 weeks 6.11 weeks 13.05 weeks 6.79 weeks 0 weeks 23.49 weeks
make_complete_output(rdifftimeSummaryExample)
Summary statistics of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks.
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 184 21.37 9.76 weeks 5.07 weeks 9.6 weeks 5.12 weeks 6.11 weeks 13.05 weeks 6.79 weeks 0 weeks 23.49 weeks

Stacked barplot of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks.
show(rdifftimeByDrvSummaryExample)
         drive type
1 front-wheel drive
2  rear wheel drive
3               4wd
4           Overall
                                                                                                                    Label
1 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
2 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
3 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
4 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
    N  P NA        Mean      S Dev         Med        MAD     25th P
1  86 18.87 10.57 weeks 5.24 weeks 10.79 weeks 4.80 weeks 6.59 weeks
2  19 24.00  8.43 weeks 5.17 weeks  8.57 weeks 5.74 weeks 4.70 weeks
3  79 23.30  9.19 weeks 4.77 weeks  9.02 weeks 4.77 weeks 6.11 weeks
4 184 21.37  9.76 weeks 5.07 weeks  9.60 weeks 5.12 weeks 6.11 weeks
       75th P        IQR     Min         Max
1 13.57 weeks 6.87 weeks 0 weeks 23.49 weeks
2 12.72 weeks 7.27 weeks 0 weeks 19.07 weeks
3 12.58 weeks 6.15 weeks 0 weeks 21.71 weeks
4 13.05 weeks 6.79 weeks 0 weeks 23.49 weeks

data_summary_table(rdifftimeByDrvSummaryExample)
         drive type
1 front-wheel drive
2  rear wheel drive
3               4wd
4           Overall
                                                                                                                    Label
1 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
2 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
3 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
4 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
    N  P NA        Mean      S Dev         Med        MAD     25th P
1  86 18.87 10.57 weeks 5.24 weeks 10.79 weeks 4.80 weeks 6.59 weeks
2  19 24.00  8.43 weeks 5.17 weeks  8.57 weeks 5.74 weeks 4.70 weeks
3  79 23.30  9.19 weeks 4.77 weeks  9.02 weeks 4.77 weeks 6.11 weeks
4 184 21.37  9.76 weeks 5.07 weeks  9.60 weeks 5.12 weeks 6.11 weeks
       75th P        IQR     Min         Max
1 13.57 weeks 6.87 weeks 0 weeks 23.49 weeks
2 12.72 weeks 7.27 weeks 0 weeks 19.07 weeks
3 12.58 weeks 6.15 weeks 0 weeks 21.71 weeks
4 13.05 weeks 6.79 weeks 0 weeks 23.49 weeks
data_summary_plot(rdifftimeByDrvSummaryExample)

make_kable_output(rdifftimeByDrvSummaryExample)
Summary statistics of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks by drive type.
drive type Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
front-wheel drive some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 86 18.87 10.57 weeks 5.24 weeks 10.79 weeks 4.80 weeks 6.59 weeks 13.57 weeks 6.87 weeks 0 weeks 23.49 weeks
rear wheel drive some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 19 24.00 8.43 weeks 5.17 weeks 8.57 weeks 5.74 weeks 4.70 weeks 12.72 weeks 7.27 weeks 0 weeks 19.07 weeks
4wd some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 79 23.30 9.19 weeks 4.77 weeks 9.02 weeks 4.77 weeks 6.11 weeks 12.58 weeks 6.15 weeks 0 weeks 21.71 weeks
Overall some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 184 21.37 9.76 weeks 5.07 weeks 9.60 weeks 5.12 weeks 6.11 weeks 13.05 weeks 6.79 weeks 0 weeks 23.49 weeks
make_complete_output(rdifftimeByDrvSummaryExample)
Summary statistics of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks by drive type.
drive type Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
front-wheel drive some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 86 18.87 10.57 weeks 5.24 weeks 10.79 weeks 4.80 weeks 6.59 weeks 13.57 weeks 6.87 weeks 0 weeks 23.49 weeks
rear wheel drive some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 19 24.00 8.43 weeks 5.17 weeks 8.57 weeks 5.74 weeks 4.70 weeks 12.72 weeks 7.27 weeks 0 weeks 19.07 weeks
4wd some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 79 23.30 9.19 weeks 4.77 weeks 9.02 weeks 4.77 weeks 6.11 weeks 12.58 weeks 6.15 weeks 0 weeks 21.71 weeks
Overall some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 184 21.37 9.76 weeks 5.07 weeks 9.60 weeks 5.12 weeks 6.11 weeks 13.05 weeks 6.79 weeks 0 weeks 23.49 weeks

Stacked barplot of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks by drive type.
show(rdifftimeByDrvBypartySummaryExample)
   drive type by some random political parties
1                front-wheel drive, republican
2                 rear wheel drive, republican
3                              4wd, republican
4                  front-wheel drive, democrat
5                   rear wheel drive, democrat
6                                4wd, democrat
7               front-wheel drive, independent
8                rear wheel drive, independent
9                             4wd, independent
10                                     Overall
11                                  R NA Value
                                                                                                                     Label
1  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
2  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
3  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
4  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
5  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
6  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
7  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
8  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
9  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
10 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
11 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
     N  P NA        Mean      S Dev         Med        MAD     25th P
1   18 30.77  8.95 weeks 6.26 weeks  9.97 weeks 5.64 weeks 4.95 weeks
2    4  0.00  8.75 weeks 4.34 weeks  8.31 weeks 4.84 weeks 4.96 weeks
3   23 11.54 10.07 weeks 6.02 weeks 11.25 weeks 6.73 weeks 4.81 weeks
4   17  5.56 11.37 weeks 4.11 weeks 12.03 weeks 4.84 weeks 7.55 weeks
5    5 16.67  8.26 weeks 3.99 weeks  9.35 weeks 5.25 weeks 4.70 weeks
6   30 18.92  8.31 weeks 4.50 weeks  7.60 weeks 5.60 weeks 6.41 weeks
7   26 18.75 10.75 weeks 4.96 weeks 10.31 weeks 4.84 weeks 5.99 weeks
8    6 14.29  8.80 weeks 5.07 weeks  8.18 weeks 5.40 weeks 5.44 weeks
9   15 34.78  9.86 weeks 4.04 weeks  9.58 weeks 5.87 weeks 5.61 weeks
10 184 21.37  9.76 weeks 5.07 weeks  9.60 weeks 5.12 weeks 6.11 weeks
11  40 27.27 10.08 weeks 5.38 weeks 10.06 weeks 4.12 weeks 6.76 weeks
        75th P        IQR        Min         Max
1  11.98 weeks 6.63 weeks 0.00 weeks 23.49 weeks
2  11.48 weeks 6.87 weeks 4.96 weeks 13.41 weeks
3  15.45 weeks 9.23 weeks 0.00 weeks 21.71 weeks
4  13.88 weeks 6.32 weeks 5.05 weeks 18.28 weeks
5  10.78 weeks 6.08 weeks 3.57 weeks 12.89 weeks
6  11.90 weeks 5.46 weeks 0.00 weeks 16.25 weeks
7  13.57 weeks 6.80 weeks 2.95 weeks 21.65 weeks
8  12.72 weeks 5.66 weeks 2.04 weeks 16.22 weeks
9  13.65 weeks 6.94 weeks 4.33 weeks 15.38 weeks
10 13.05 weeks 6.79 weeks 0.00 weeks 23.49 weeks
11 12.27 weeks 5.46 weeks 0.00 weeks 22.98 weeks

data_summary_table(rdifftimeByDrvBypartySummaryExample)
   drive type by some random political parties
1                front-wheel drive, republican
2                 rear wheel drive, republican
3                              4wd, republican
4                  front-wheel drive, democrat
5                   rear wheel drive, democrat
6                                4wd, democrat
7               front-wheel drive, independent
8                rear wheel drive, independent
9                             4wd, independent
10                                     Overall
11                                  R NA Value
                                                                                                                     Label
1  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
2  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
3  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
4  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
5  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
6  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
7  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
8  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
9  some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
10 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
11 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
     N  P NA        Mean      S Dev         Med        MAD     25th P
1   18 30.77  8.95 weeks 6.26 weeks  9.97 weeks 5.64 weeks 4.95 weeks
2    4  0.00  8.75 weeks 4.34 weeks  8.31 weeks 4.84 weeks 4.96 weeks
3   23 11.54 10.07 weeks 6.02 weeks 11.25 weeks 6.73 weeks 4.81 weeks
4   17  5.56 11.37 weeks 4.11 weeks 12.03 weeks 4.84 weeks 7.55 weeks
5    5 16.67  8.26 weeks 3.99 weeks  9.35 weeks 5.25 weeks 4.70 weeks
6   30 18.92  8.31 weeks 4.50 weeks  7.60 weeks 5.60 weeks 6.41 weeks
7   26 18.75 10.75 weeks 4.96 weeks 10.31 weeks 4.84 weeks 5.99 weeks
8    6 14.29  8.80 weeks 5.07 weeks  8.18 weeks 5.40 weeks 5.44 weeks
9   15 34.78  9.86 weeks 4.04 weeks  9.58 weeks 5.87 weeks 5.61 weeks
10 184 21.37  9.76 weeks 5.07 weeks  9.60 weeks 5.12 weeks 6.11 weeks
11  40 27.27 10.08 weeks 5.38 weeks 10.06 weeks 4.12 weeks 6.76 weeks
        75th P        IQR        Min         Max
1  11.98 weeks 6.63 weeks 0.00 weeks 23.49 weeks
2  11.48 weeks 6.87 weeks 4.96 weeks 13.41 weeks
3  15.45 weeks 9.23 weeks 0.00 weeks 21.71 weeks
4  13.88 weeks 6.32 weeks 5.05 weeks 18.28 weeks
5  10.78 weeks 6.08 weeks 3.57 weeks 12.89 weeks
6  11.90 weeks 5.46 weeks 0.00 weeks 16.25 weeks
7  13.57 weeks 6.80 weeks 2.95 weeks 21.65 weeks
8  12.72 weeks 5.66 weeks 2.04 weeks 16.22 weeks
9  13.65 weeks 6.94 weeks 4.33 weeks 15.38 weeks
10 13.05 weeks 6.79 weeks 0.00 weeks 23.49 weeks
11 12.27 weeks 5.46 weeks 0.00 weeks 22.98 weeks
data_summary_plot(rdifftimeByDrvBypartySummaryExample)

make_kable_output(rdifftimeByDrvBypartySummaryExample)
Summary statistics of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks by drive type by some random political parties.
drive type by some random political parties Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
front-wheel drive, republican some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 18 30.77 8.95 weeks 6.26 weeks 9.97 weeks 5.64 weeks 4.95 weeks 11.98 weeks 6.63 weeks 0.00 weeks 23.49 weeks
rear wheel drive, republican some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 4 0.00 8.75 weeks 4.34 weeks 8.31 weeks 4.84 weeks 4.96 weeks 11.48 weeks 6.87 weeks 4.96 weeks 13.41 weeks
4wd, republican some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 23 11.54 10.07 weeks 6.02 weeks 11.25 weeks 6.73 weeks 4.81 weeks 15.45 weeks 9.23 weeks 0.00 weeks 21.71 weeks
front-wheel drive, democrat some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 17 5.56 11.37 weeks 4.11 weeks 12.03 weeks 4.84 weeks 7.55 weeks 13.88 weeks 6.32 weeks 5.05 weeks 18.28 weeks
rear wheel drive, democrat some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 5 16.67 8.26 weeks 3.99 weeks 9.35 weeks 5.25 weeks 4.70 weeks 10.78 weeks 6.08 weeks 3.57 weeks 12.89 weeks
4wd, democrat some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 30 18.92 8.31 weeks 4.50 weeks 7.60 weeks 5.60 weeks 6.41 weeks 11.90 weeks 5.46 weeks 0.00 weeks 16.25 weeks
front-wheel drive, independent some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 26 18.75 10.75 weeks 4.96 weeks 10.31 weeks 4.84 weeks 5.99 weeks 13.57 weeks 6.80 weeks 2.95 weeks 21.65 weeks
rear wheel drive, independent some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 6 14.29 8.80 weeks 5.07 weeks 8.18 weeks 5.40 weeks 5.44 weeks 12.72 weeks 5.66 weeks 2.04 weeks 16.22 weeks
4wd, independent some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 15 34.78 9.86 weeks 4.04 weeks 9.58 weeks 5.87 weeks 5.61 weeks 13.65 weeks 6.94 weeks 4.33 weeks 15.38 weeks
Overall some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 184 21.37 9.76 weeks 5.07 weeks 9.60 weeks 5.12 weeks 6.11 weeks 13.05 weeks 6.79 weeks 0.00 weeks 23.49 weeks
R NA Value some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 40 27.27 10.08 weeks 5.38 weeks 10.06 weeks 4.12 weeks 6.76 weeks 12.27 weeks 5.46 weeks 0.00 weeks 22.98 weeks
make_complete_output(rdifftimeByDrvBypartySummaryExample)
Summary statistics of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks by drive type by some random political parties.
drive type by some random political parties Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
front-wheel drive, republican some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 18 30.77 8.95 weeks 6.26 weeks 9.97 weeks 5.64 weeks 4.95 weeks 11.98 weeks 6.63 weeks 0.00 weeks 23.49 weeks
rear wheel drive, republican some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 4 0.00 8.75 weeks 4.34 weeks 8.31 weeks 4.84 weeks 4.96 weeks 11.48 weeks 6.87 weeks 4.96 weeks 13.41 weeks
4wd, republican some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 23 11.54 10.07 weeks 6.02 weeks 11.25 weeks 6.73 weeks 4.81 weeks 15.45 weeks 9.23 weeks 0.00 weeks 21.71 weeks
front-wheel drive, democrat some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 17 5.56 11.37 weeks 4.11 weeks 12.03 weeks 4.84 weeks 7.55 weeks 13.88 weeks 6.32 weeks 5.05 weeks 18.28 weeks
rear wheel drive, democrat some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 5 16.67 8.26 weeks 3.99 weeks 9.35 weeks 5.25 weeks 4.70 weeks 10.78 weeks 6.08 weeks 3.57 weeks 12.89 weeks
4wd, democrat some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 30 18.92 8.31 weeks 4.50 weeks 7.60 weeks 5.60 weeks 6.41 weeks 11.90 weeks 5.46 weeks 0.00 weeks 16.25 weeks
front-wheel drive, independent some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 26 18.75 10.75 weeks 4.96 weeks 10.31 weeks 4.84 weeks 5.99 weeks 13.57 weeks 6.80 weeks 2.95 weeks 21.65 weeks
rear wheel drive, independent some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 6 14.29 8.80 weeks 5.07 weeks 8.18 weeks 5.40 weeks 5.44 weeks 12.72 weeks 5.66 weeks 2.04 weeks 16.22 weeks
4wd, independent some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 15 34.78 9.86 weeks 4.04 weeks 9.58 weeks 5.87 weeks 5.61 weeks 13.65 weeks 6.94 weeks 4.33 weeks 15.38 weeks
Overall some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 184 21.37 9.76 weeks 5.07 weeks 9.60 weeks 5.12 weeks 6.11 weeks 13.05 weeks 6.79 weeks 0.00 weeks 23.49 weeks
R NA Value some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 40 27.27 10.08 weeks 5.38 weeks 10.06 weeks 4.12 weeks 6.76 weeks 12.27 weeks 5.46 weeks 0.00 weeks 22.98 weeks

Stacked barplot of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks by drive type by some random political parties.

Data Summaries

manuSummary <- data_summary(x = "manu", data = mpg)

make_complete_output(manuSummary)
Summary statistics of manufacturer.
manufacturer n (%)
audi 18 (7.69%)
chevrolet 19 (8.12%)
dodge 37 (15.81%)
ford 25 (10.68%)
honda 9 (3.85%)
hyundai 14 (5.98%)
jeep 8 (3.42%)
land rover 4 (1.71%)
lincoln 3 (1.28%)
mercury 4 (1.71%)
nissan 13 (5.56%)
pontiac 5 (2.14%)
subaru 14 (5.98%)
toyota 34 (14.53%)
volkswagen 27 (11.54%)

Stacked barplot of manufacturer.
modelSummary <- data_summary(x = "model", data = mpg)

make_complete_output(modelSummary)
Summary statistics of model name.
model name n (%)
4runner 4wd 6 (2.56%)
a4 7 (2.99%)
a4 quattro 8 (3.42%)
a6 quattro 3 (1.28%)
altima 6 (2.56%)
c1500 suburban 2wd 5 (2.14%)
camry 7 (2.99%)
camry solara 7 (2.99%)
caravan 2wd 11 (4.7%)
civic 9 (3.85%)
corolla 5 (2.14%)
corvette 5 (2.14%)
dakota pickup 4wd 9 (3.85%)
durango 4wd 7 (2.99%)
expedition 2wd 3 (1.28%)
explorer 4wd 6 (2.56%)
f150 pickup 4wd 7 (2.99%)
forester awd 6 (2.56%)
grand cherokee 4wd 8 (3.42%)
grand prix 5 (2.14%)
gti 5 (2.14%)
impreza awd 8 (3.42%)
jetta 9 (3.85%)
k1500 tahoe 4wd 4 (1.71%)
land cruiser wagon 4wd 2 (0.85%)
malibu 5 (2.14%)
maxima 3 (1.28%)
mountaineer 4wd 4 (1.71%)
mustang 9 (3.85%)
navigator 2wd 3 (1.28%)
new beetle 6 (2.56%)
passat 7 (2.99%)
pathfinder 4wd 4 (1.71%)
ram 1500 pickup 4wd 10 (4.27%)
range rover 4 (1.71%)
sonata 7 (2.99%)
tiburon 7 (2.99%)
toyota tacoma 4wd 7 (2.99%)

Stacked barplot of model name.
displSummary <- data_summary(x = "displ", data = mpg)

make_complete_output(displSummary)
Summary statistics of engine displacement, in litres.
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
engine displacement, in litres 234 0 3.47 1.29 3.3 1.33 2.4 4.6 2.2 1.6 7

Boxplot of engine displacement, in litres.
yearSummary <- data_summary(x = "year", data = mpg)

make_complete_output(yearSummary)
Summary statistics of year of manufacture.
year of manufacture n (%)
1999 117 (50%)
2008 117 (50%)

Stacked barplot of year of manufacture.
dpSummary <- data_summary(x = "dp", data = mpg[which(mpg$dp != "1000-05-02" | is.na(mpg$dp)), ], difftime_units = "weeks")

make_complete_output(dpSummary)
Summary statistics of date of purchase (Date class).
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24 74.98 weeks 1999-07-14 2008-09-01 476.7143 weeks 1999-01-04 2008-12-23

Boxplot of date of purchase (Date class).
cylSummary <- data_summary(x = "cyl", data = mpg)

make_complete_output(cylSummary)
Summary statistics of number of cylinders.
number of cylinders n (%)
4 81 (34.62%)
5 4 (1.71%)
6 79 (33.76%)
8 70 (29.91%)

Stacked barplot of number of cylinders.
transSummary <- data_summary(x = "trans", data = mpg)

make_complete_output(transSummary)
Summary statistics of type of transmission.
type of transmission n (%)
auto(av) 5 (2.14%)
auto(l3) 2 (0.85%)
auto(l4) 83 (35.47%)
auto(l5) 39 (16.67%)
auto(l6) 6 (2.56%)
auto(s4) 3 (1.28%)
auto(s5) 3 (1.28%)
auto(s6) 16 (6.84%)
manual(m5) 58 (24.79%)
manual(m6) 19 (8.12%)

Stacked barplot of type of transmission.
drvSummary <- data_summary(x = "drv", data = mpg)

make_complete_output(drvSummary)
Summary statistics of drive type.
drive type n (%)
front-wheel drive 106 (45.3%)
rear wheel drive 25 (10.68%)
4wd 103 (44.02%)

Stacked barplot of drive type.
ctySummary <- data_summary(x = "cty", data = mpg)

make_complete_output(ctySummary)
Summary statistics of city miles per gallon.
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
city miles per gallon 234 0 16.86 4.26 17 4.45 14 19 5 9 35

Boxplot of city miles per gallon.
hwySummary <- data_summary(x = "hwy", data = mpg)

make_complete_output(hwySummary)
Summary statistics of highway miles per gallon.
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
highway miles per gallon 234 0 23.44 5.95 24 7.41 18 27 9 12 44

Boxplot of highway miles per gallon.
flSummary <- data_summary(x = "fl", data = mpg)

make_complete_output(flSummary)
Summary statistics of fuel type.
fuel type n (%)
c 1 (0.43%)
d 5 (2.14%)
e 8 (3.42%)
p 52 (22.22%)
r 168 (71.79%)

Stacked barplot of fuel type.
classSummary <- data_summary(x = "class", data = mpg)

make_complete_output(classSummary)
Summary statistics of type of car.
type of car n (%)
2seater 5 (2.14%)
compact 47 (20.09%)
midsize 41 (17.52%)
minivan 11 (4.7%)
pickup 33 (14.1%)
subcompact 35 (14.96%)
suv 62 (26.5%)

Stacked barplot of type of car.
rnSummary <- data_summary(x = "rn", data = mpg)

make_complete_output(rnSummary)
Summary statistics of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5.
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 184 21.37 10.53 5.09 10.73 4.72 7.12 13.32 6.12 -2.54 23.46

Boxplot of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5.
rdifftimeSummary <- data_summary(x = "rdifftime", difftime_units = "weeks", data = mpg)

make_complete_output(rdifftimeSummary)
Summary statistics of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks.
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 184 21.37 9.76 weeks 5.07 weeks 9.6 weeks 5.12 weeks 6.11 weeks 13.05 weeks 6.79 weeks 0 weeks 23.49 weeks

Boxplot of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks.
logicalSummary <- data_summary(x = "logical", difftime_units = "weeks", data = mpg)

make_complete_output(logicalSummary)
Summary statistics of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, and then set to TRUE if the difference is greater than 10.
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, and then set to TRUE if the difference is greater than 10 n (%)
FALSE 96 (41.03%)
TRUE 88 (37.61%)
R NA Value 50 (21.37%)

Boxplot of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, and then set to TRUE if the difference is greater than 10.
partySummary <- data_summary(x = "party", data = mpg)

make_complete_output(partySummary)
Summary statistics of some random political parties.
some random political parties n (%)
republican 56 (23.93%)
democrat 61 (26.07%)
independent 62 (26.5%)
R NA Value 55 (23.5%)

Stacked barplot of some random political parties.
commentsSummary <- data_summary(x = "comments", data = mpg)

make_complete_output(commentsSummary)
Summary statistics of some random comments.
some random comments n (%)
. 26 (11.11%)
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah 23 (9.83%)
Does it also fly? 16 (6.84%)
Does it come in green? 23 (9.83%)
I like this car! 24 (10.26%)
Meh. 18 (7.69%)
Missing 25 (10.68%)
This is the worst car ever! 22 (9.4%)
want cheese flavoured cars. 33 (14.1%)
R NA Value 24 (10.26%)

Stacked barplot of some random comments.
missSummary <- data_summary(x = "miss", data = mpg)

make_complete_output(missSummary)
Summary statistics of an all missing variable.
an all missing variable n (%)
R NA Value 234 (100%)

Stacked barplot of an all missing variable.

By Data Summaries

By Drive Type

cylByDrvSummary <- data_summary(x = "cyl", by = "drv", data = mpg)

make_complete_output(cylByDrvSummary)
Summary statistics of number of cylinders by drive type.
number of cylinders front-wheel drive rear wheel drive 4wd Overall
4 58 (54.72%) 0 (0%) 23 (22.33%) 81 (34.62%)
5 4 (3.77%) 0 (0%) 0 (0%) 4 (1.71%)
6 43 (40.57%) 4 (16%) 32 (31.07%) 79 (33.76%)
8 1 (0.94%) 21 (84%) 48 (46.6%) 70 (29.91%)

Stacked barplot of number of cylinders by drive type.
dpByDrvSummary <- data_summary(x = "dp", by = "drv", data = mpg[which(mpg$dp != "1000-05-02" | is.na(mpg$dp)), ], difftime_units = "weeks")

make_complete_output(dpByDrvSummary)
Summary statistics of date of purchase (Date class) by drive type.
drive type Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
front-wheel drive date of purchase (Date class) 94 11.32 2003-06-08 235.20 weeks 1999-11-21 60.47 weeks 1999-07-03 2008-08-25 477.2857 weeks 1999-01-07 2008-12-23
rear wheel drive date of purchase (Date class) 24 4.00 2004-09-28 235.47 weeks 2008-01-21 60.57 weeks 1999-07-29 2008-07-13 467.4286 weeks 1999-01-13 2008-12-14
4wd date of purchase (Date class) 95 6.86 2004-04-21 237.55 weeks 2008-01-26 64.81 weeks 1999-06-27 2008-09-01 479.1429 weeks 1999-01-04 2008-12-09
Overall date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24 74.98 weeks 1999-07-14 2008-09-01 476.7143 weeks 1999-01-04 2008-12-23

Boxplot of date of purchase (Date class) by drive type.
rnByDrvSummary <- data_summary(x = "rn", by = "drv", data = mpg)

make_complete_output(rnByDrvSummary)
Summary statistics of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 by drive type.
drive type Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
front-wheel drive some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 86 18.87 10.50 5.32 9.88 4.68 7.36 13.95 6.53 -2.54 23.46
rear wheel drive some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 18 28.00 11.59 4.49 11.05 2.89 9.62 14.28 4.58 0.28 20.81
4wd some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 80 22.33 10.33 4.99 11.20 4.60 6.20 13.08 6.78 0.57 23.42
Overall some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 184 21.37 10.53 5.09 10.73 4.72 7.12 13.32 6.12 -2.54 23.46

Boxplot of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 by drive type.
rdifftimeByDrvSummary <- data_summary(x = "rdifftime", by = "drv", difftime_units = "weeks", data = mpg)

make_complete_output(rdifftimeByDrvSummary)
Summary statistics of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks by drive type.
drive type Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
front-wheel drive some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 86 18.87 10.57 weeks 5.24 weeks 10.79 weeks 4.80 weeks 6.59 weeks 13.57 weeks 6.87 weeks 0 weeks 23.49 weeks
rear wheel drive some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 19 24.00 8.43 weeks 5.17 weeks 8.57 weeks 5.74 weeks 4.70 weeks 12.72 weeks 7.27 weeks 0 weeks 19.07 weeks
4wd some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 79 23.30 9.19 weeks 4.77 weeks 9.02 weeks 4.77 weeks 6.11 weeks 12.58 weeks 6.15 weeks 0 weeks 21.71 weeks
Overall some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 184 21.37 9.76 weeks 5.07 weeks 9.60 weeks 5.12 weeks 6.11 weeks 13.05 weeks 6.79 weeks 0 weeks 23.49 weeks

Boxplot of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks by drive type.
logicalByDrvSummary <- data_summary(x = "logical", by = "drv", difftime_units = "weeks", data = mpg)

make_complete_output(logicalByDrvSummary)
Summary statistics of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, and then set to TRUE if the difference is greater than 10 by drive type.
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, and then set to TRUE if the difference is greater than 10 front-wheel drive rear wheel drive 4wd Overall
FALSE 40 (37.74%) 11 (44%) 45 (43.69%) 96 (41.03%)
TRUE 46 (43.4%) 8 (32%) 34 (33.01%) 88 (37.61%)
R NA Value 20 (18.87%) 6 (24%) 24 (23.3%) 50 (21.37%)

Stacked barplot of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, and then set to TRUE if the difference is greater than 10 by drive type.
commentsByDrvSummary <- data_summary(x = "comments", by = "drv", data = mpg)

make_complete_output(commentsByDrvSummary)
Summary statistics of some random comments by drive type.
some random comments front-wheel drive rear wheel drive 4wd Overall
. 9 (8.49%) 5 (20%) 12 (11.65%) 26 (11.11%)
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah 12 (11.32%) 3 (12%) 8 (7.77%) 23 (9.83%)
Does it also fly? 11 (10.38%) 1 (4%) 4 (3.88%) 16 (6.84%)
Does it come in green? 12 (11.32%) 1 (4%) 10 (9.71%) 23 (9.83%)
I like this car! 13 (12.26%) 1 (4%) 10 (9.71%) 24 (10.26%)
Meh. 6 (5.66%) 2 (8%) 10 (9.71%) 18 (7.69%)
Missing 8 (7.55%) 3 (12%) 14 (13.59%) 25 (10.68%)
This is the worst car ever! 14 (13.21%) 2 (8%) 6 (5.83%) 22 (9.4%)
want cheese flavoured cars. 13 (12.26%) 2 (8%) 18 (17.48%) 33 (14.1%)
R NA Value 8 (7.55%) 5 (20%) 11 (10.68%) 24 (10.26%)

Stacked barplot of some random comments by drive type.
missByDrvSummary <- data_summary(x = "miss", by = "drv", data = mpg)

make_complete_output(missByDrvSummary)
Summary statistics of an all missing variable by drive type.
an all missing variable front-wheel drive rear wheel drive 4wd Overall
R NA Value 106 (100%) 25 (100%) 103 (100%) 234 (100%)

Stacked barplot of an all missing variable by drive type.

City and Highway MPG

ctyBymanuSummary <- data_summary(x = "cty", by = "manu", data = mpg)

make_complete_output(ctyBymanuSummary)
Summary statistics of city miles per gallon by manufacturer.
manufacturer Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
audi city miles per gallon 18 0 17.61 1.97 17.5 2.22 16 19 2.75 15 21
chevrolet city miles per gallon 19 0 15.00 2.92 15.0 2.97 13 17 3.00 11 22
dodge city miles per gallon 37 0 13.14 2.49 13.0 2.97 11 15 4.00 9 18
ford city miles per gallon 25 0 14.00 1.91 14.0 1.48 13 15 2.00 11 18
honda city miles per gallon 9 0 24.44 1.94 24.0 1.48 24 25 1.00 21 28
hyundai city miles per gallon 14 0 18.64 1.50 18.5 1.48 18 20 1.75 16 21
jeep city miles per gallon 8 0 13.50 2.51 14.0 1.48 11 15 2.50 9 17
land rover city miles per gallon 4 0 11.50 0.58 11.5 0.74 11 12 1.00 11 12
lincoln city miles per gallon 3 0 11.33 0.58 11.0 0.00 11 12 0.50 11 12
mercury city miles per gallon 4 0 13.25 0.50 13.0 0.00 13 13 0.25 13 14
nissan city miles per gallon 13 0 18.08 3.43 19.0 2.97 15 19 4.00 12 23
pontiac city miles per gallon 5 0 17.00 1.00 17.0 1.48 16 18 2.00 16 18
subaru city miles per gallon 14 0 19.29 0.91 19.0 1.48 19 20 1.00 18 21
toyota city miles per gallon 34 0 18.53 4.05 18.0 4.45 15 21 6.00 11 28
volkswagen city miles per gallon 27 0 20.93 4.56 21.0 2.97 18 21 2.50 16 35
Overall city miles per gallon 234 0 16.86 4.26 17.0 4.45 14 19 5.00 9 35

Boxplot of city miles per gallon by manufacturer.
hwyBymanuSummary <- data_summary(x = "hwy", by = "manu", data = mpg)

make_complete_output(hwyBymanuSummary)
Summary statistics of highway miles per gallon by manufacturer.
manufacturer Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
audi highway miles per gallon 18 0 26.44 2.18 26.0 1.48 25 28 2.75 23 31
chevrolet highway miles per gallon 19 0 21.89 5.11 23.0 5.93 17 26 9.00 14 30
dodge highway miles per gallon 37 0 17.95 3.57 17.0 2.97 16 21 5.00 12 24
ford highway miles per gallon 25 0 19.36 3.33 18.0 1.48 17 22 5.00 15 26
honda highway miles per gallon 9 0 32.56 2.55 32.0 2.97 32 34 2.00 29 36
hyundai highway miles per gallon 14 0 26.86 2.18 26.5 2.22 26 28 2.00 24 31
jeep highway miles per gallon 8 0 17.62 3.25 18.5 2.22 14 19 3.00 12 22
land rover highway miles per gallon 4 0 16.50 1.73 16.5 2.22 15 18 3.00 15 18
lincoln highway miles per gallon 3 0 17.00 1.00 17.0 1.48 16 18 1.00 16 18
mercury highway miles per gallon 4 0 18.00 1.15 18.0 1.48 17 19 2.00 17 19
nissan highway miles per gallon 13 0 24.62 5.09 26.0 4.45 20 27 7.00 17 32
pontiac highway miles per gallon 5 0 26.40 1.14 26.0 1.48 26 27 1.00 25 28
subaru highway miles per gallon 14 0 25.57 1.16 26.0 1.48 25 26 1.00 23 27
toyota highway miles per gallon 34 0 24.91 6.17 26.0 8.90 20 30 9.75 15 37
volkswagen highway miles per gallon 27 0 29.22 5.32 29.0 1.48 26 29 3.00 23 44
Overall highway miles per gallon 234 0 23.44 5.95 24.0 7.41 18 27 9.00 12 44

Boxplot of highway miles per gallon by manufacturer.
ctyBymodelSummary <- data_summary(x = "cty", by = "model", data = mpg)

make_complete_output(ctyBymodelSummary)
Summary statistics of city miles per gallon by model name.
model name Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4runner 4wd city miles per gallon 6 0 15.17 0.75 15.0 0.74 15 16 0.75 14 16
a4 city miles per gallon 7 0 18.86 1.86 18.0 2.97 18 21 2.50 16 21
a4 quattro city miles per gallon 8 0 17.12 1.81 17.0 2.22 15 18 2.50 15 20
a6 quattro city miles per gallon 3 0 16.00 1.00 16.0 1.48 15 17 1.00 15 17
altima city miles per gallon 6 0 20.67 1.97 20.0 1.48 19 23 3.50 19 23
c1500 suburban 2wd city miles per gallon 5 0 12.80 1.30 13.0 1.48 12 14 2.00 11 14
camry city miles per gallon 7 0 19.86 1.46 21.0 0.00 18 21 2.50 18 21
camry solara city miles per gallon 7 0 19.86 1.77 21.0 1.48 18 21 3.00 18 22
caravan 2wd city miles per gallon 11 0 15.82 1.83 16.0 1.48 15 17 1.50 11 18
civic city miles per gallon 9 0 24.44 1.94 24.0 1.48 24 25 1.00 21 28
corolla city miles per gallon 5 0 25.60 1.67 26.0 2.97 24 26 2.00 24 28
corvette city miles per gallon 5 0 15.40 0.55 15.0 0.00 15 16 1.00 15 16
dakota pickup 4wd city miles per gallon 9 0 12.78 1.99 14.0 1.48 11 14 3.00 9 15
durango 4wd city miles per gallon 7 0 11.86 1.57 13.0 0.00 11 13 2.00 9 13
expedition 2wd city miles per gallon 3 0 11.33 0.58 11.0 0.00 11 12 0.50 11 12
explorer 4wd city miles per gallon 6 0 13.67 0.82 13.5 0.74 13 14 1.00 13 15
f150 pickup 4wd city miles per gallon 7 0 13.00 1.00 13.0 0.00 13 14 0.50 11 14
forester awd city miles per gallon 6 0 18.83 0.98 18.5 0.74 18 20 1.75 18 20
grand cherokee 4wd city miles per gallon 8 0 13.50 2.51 14.0 1.48 11 15 2.50 9 17
grand prix city miles per gallon 5 0 17.00 1.00 17.0 1.48 16 18 2.00 16 18
gti city miles per gallon 5 0 20.00 2.00 21.0 1.48 19 21 2.00 17 22
impreza awd city miles per gallon 8 0 19.62 0.74 19.5 0.74 19 20 1.00 19 21
jetta city miles per gallon 9 0 21.22 4.87 21.0 1.48 19 21 2.00 16 33
k1500 tahoe 4wd city miles per gallon 4 0 12.50 1.73 12.5 2.22 11 14 3.00 11 14
land cruiser wagon 4wd city miles per gallon 2 0 12.00 1.41 12.0 1.48 11 13 1.00 11 13
malibu city miles per gallon 5 0 18.80 1.92 18.0 1.48 18 19 1.00 17 22
maxima city miles per gallon 3 0 18.67 0.58 19.0 0.00 18 19 0.50 18 19
mountaineer 4wd city miles per gallon 4 0 13.25 0.50 13.0 0.00 13 13 0.25 13 14
mustang city miles per gallon 9 0 15.89 1.45 15.0 1.48 15 17 2.00 14 18
navigator 2wd city miles per gallon 3 0 11.33 0.58 11.0 0.00 11 12 0.50 11 12
new beetle city miles per gallon 6 0 24.00 6.51 20.5 1.48 20 29 7.00 19 35
passat city miles per gallon 7 0 18.57 1.90 18.0 1.48 17 21 2.50 16 21
pathfinder 4wd city miles per gallon 4 0 13.75 1.26 14.0 0.74 12 14 0.75 12 15
ram 1500 pickup 4wd city miles per gallon 10 0 11.40 1.51 11.5 1.48 11 13 1.75 9 13
range rover city miles per gallon 4 0 11.50 0.58 11.5 0.74 11 12 1.00 11 12
sonata city miles per gallon 7 0 19.00 1.41 18.0 0.00 18 21 2.00 18 21
tiburon city miles per gallon 7 0 18.29 1.60 19.0 1.48 17 20 2.50 16 20
toyota tacoma 4wd city miles per gallon 7 0 15.57 0.79 15.0 0.00 15 16 1.00 15 17
Overall city miles per gallon 234 0 16.86 4.26 17.0 4.45 14 19 5.00 9 35

Boxplot of city miles per gallon by model name.
hwyBymodelSummary <- data_summary(x = "hwy", by = "model", data = mpg)

make_complete_output(hwyBymodelSummary)
Summary statistics of highway miles per gallon by model name.
model name Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4runner 4wd highway miles per gallon 6 0 18.83 1.47 19.5 0.74 17 20 2.50 17 20
a4 highway miles per gallon 7 0 28.29 1.98 29.0 2.97 26 30 3.00 26 31
a4 quattro highway miles per gallon 8 0 25.75 1.16 25.0 0.00 25 26 1.25 25 28
a6 quattro highway miles per gallon 3 0 24.00 1.00 24.0 1.48 23 25 1.00 23 25
altima highway miles per gallon 6 0 28.67 2.42 28.0 2.22 27 31 3.50 26 32
c1500 suburban 2wd highway miles per gallon 5 0 17.80 2.17 17.0 2.97 17 20 3.00 15 20
camry highway miles per gallon 7 0 28.29 2.14 28.0 2.97 26 31 3.50 26 31
camry solara highway miles per gallon 7 0 28.14 2.19 27.0 1.48 26 31 3.50 26 31
caravan 2wd highway miles per gallon 11 0 22.36 2.06 23.0 1.48 22 24 2.00 17 24
civic highway miles per gallon 9 0 32.56 2.55 32.0 2.97 32 34 2.00 29 36
corolla highway miles per gallon 5 0 34.00 2.65 35.0 2.97 33 35 2.00 30 37
corvette highway miles per gallon 5 0 24.80 1.30 25.0 1.48 24 26 2.00 23 26
dakota pickup 4wd highway miles per gallon 9 0 17.00 2.29 17.0 2.97 17 19 2.00 12 19
durango 4wd highway miles per gallon 7 0 16.00 2.00 17.0 1.48 15 17 1.50 12 18
expedition 2wd highway miles per gallon 3 0 17.33 0.58 17.0 0.00 17 18 0.50 17 18
explorer 4wd highway miles per gallon 6 0 18.00 1.10 18.0 1.48 17 19 2.00 17 19
f150 pickup 4wd highway miles per gallon 7 0 16.43 0.79 17.0 0.00 16 17 1.00 15 17
forester awd highway miles per gallon 6 0 25.00 1.41 25.0 1.48 24 26 1.50 23 27
grand cherokee 4wd highway miles per gallon 8 0 17.62 3.25 18.5 2.22 14 19 3.00 12 22
grand prix highway miles per gallon 5 0 26.40 1.14 26.0 1.48 26 27 1.00 25 28
gti highway miles per gallon 5 0 27.40 2.30 29.0 0.00 26 29 3.00 24 29
impreza awd highway miles per gallon 8 0 26.00 0.76 26.0 0.74 25 26 0.50 25 27
jetta highway miles per gallon 9 0 29.11 6.07 29.0 0.00 26 29 3.00 23 44
k1500 tahoe 4wd highway miles per gallon 4 0 16.25 2.22 16.0 2.22 14 17 2.75 14 19
land cruiser wagon 4wd highway miles per gallon 2 0 16.50 2.12 16.5 2.22 15 18 1.50 15 18
malibu highway miles per gallon 5 0 27.60 1.82 27.0 1.48 26 29 3.00 26 30
maxima highway miles per gallon 3 0 25.33 0.58 25.0 0.00 25 26 0.50 25 26
mountaineer 4wd highway miles per gallon 4 0 18.00 1.15 18.0 1.48 17 19 2.00 17 19
mustang highway miles per gallon 9 0 23.22 2.17 23.0 2.97 22 25 3.00 20 26
navigator 2wd highway miles per gallon 3 0 17.00 1.00 17.0 1.48 16 18 1.00 16 18
new beetle highway miles per gallon 6 0 32.83 7.63 29.0 2.97 28 41 9.75 26 44
passat highway miles per gallon 7 0 27.57 1.51 28.0 1.48 26 29 3.00 26 29
pathfinder 4wd highway miles per gallon 4 0 18.00 1.41 17.5 0.74 17 18 1.50 17 20
ram 1500 pickup 4wd highway miles per gallon 10 0 15.30 1.89 16.0 1.48 15 17 1.75 12 17
range rover highway miles per gallon 4 0 16.50 1.73 16.5 2.22 15 18 3.00 15 18
sonata highway miles per gallon 7 0 27.71 2.06 27.0 1.48 26 30 3.00 26 31
tiburon highway miles per gallon 7 0 26.00 2.08 26.0 2.97 24 28 3.50 24 29
toyota tacoma 4wd highway miles per gallon 7 0 19.43 1.62 20.0 1.48 18 20 1.50 17 22
Overall highway miles per gallon 234 0 23.44 5.95 24.0 7.41 18 27 9.00 12 44

Boxplot of highway miles per gallon by model name.
ctyByYearSummary <- data_summary(x = "cty", by = "year", data = mpg)

make_complete_output(ctyByYearSummary)
Summary statistics of city miles per gallon by year of manufacture.
year of manufacture Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
1999 city miles per gallon 117 0 17.02 4.46 17 2.97 14 19 5 11 35
2008 city miles per gallon 117 0 16.70 4.06 17 4.45 13 20 7 9 28
Overall city miles per gallon 234 0 16.86 4.26 17 4.45 14 19 5 9 35

Boxplot of city miles per gallon by year of manufacture.
hwyByYearSummary <- data_summary(x = "hwy", by = "year", data = mpg)

make_complete_output(hwyByYearSummary)
Summary statistics of highway miles per gallon by year of manufacture.
year of manufacture Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
1999 highway miles per gallon 117 0 23.43 6.08 25 5.93 17 26 9 15 44
2008 highway miles per gallon 117 0 23.45 5.85 24 7.41 18 28 10 12 37
Overall highway miles per gallon 234 0 23.44 5.95 24 7.41 18 27 9 12 44

Boxplot of highway miles per gallon by year of manufacture.
ctyByCylSummary <- data_summary(x = "cty", by = "cyl", data = mpg)

make_complete_output(ctyByCylSummary)
Summary statistics of city miles per gallon by number of cylinders.
number of cylinders Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4 city miles per gallon 81 0 21.01 3.50 21.0 2.97 19 22 3 15 35
5 city miles per gallon 4 0 20.50 0.58 20.5 0.74 20 21 1 20 21
6 city miles per gallon 79 0 16.22 1.77 16.0 1.48 15 18 3 11 19
8 city miles per gallon 70 0 12.57 1.81 13.0 2.22 11 14 3 9 16
Overall city miles per gallon 234 0 16.86 4.26 17.0 4.45 14 19 5 9 35

Boxplot of city miles per gallon by number of cylinders.
hwyByCylSummary <- data_summary(x = "hwy", by = "cyl", data = mpg)

make_complete_output(hwyByCylSummary)
Summary statistics of highway miles per gallon by number of cylinders.
number of cylinders Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4 highway miles per gallon 81 0 28.80 4.52 29 2.97 26 31 5.00 20 44
5 highway miles per gallon 4 0 28.75 0.50 29 0.00 28 29 0.25 28 29
6 highway miles per gallon 79 0 22.82 3.69 24 2.97 19 26 7.00 17 29
8 highway miles per gallon 70 0 17.63 3.26 17 2.97 16 19 3.00 12 26
Overall highway miles per gallon 234 0 23.44 5.95 24 7.41 18 27 9.00 12 44

Boxplot of highway miles per gallon by number of cylinders.
ctyBytransSummary <- data_summary(x = "cty", by = "trans", data = mpg)

make_complete_output(ctyBytransSummary)
Summary statistics of city miles per gallon by type of transmission.
type of transmission Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
auto(av) city miles per gallon 5 0 20.00 2.00 19 1.48 19 21 2.0 18 23
auto(l3) city miles per gallon 2 0 21.00 4.24 21 4.45 18 24 3.0 18 24
auto(l4) city miles per gallon 83 0 15.94 3.98 16 4.45 13 18 5.0 11 29
auto(l5) city miles per gallon 39 0 14.72 3.49 14 1.48 13 16 3.0 9 25
auto(l6) city miles per gallon 6 0 13.67 1.86 13 1.48 12 16 3.0 12 16
auto(s4) city miles per gallon 3 0 18.67 2.31 20 0.00 16 20 2.0 16 20
auto(s5) city miles per gallon 3 0 17.33 5.03 18 5.93 12 22 5.0 12 22
auto(s6) city miles per gallon 16 0 17.38 3.22 17 2.97 15 19 3.5 12 22
manual(m5) city miles per gallon 58 0 19.26 4.56 19 2.97 17 21 4.0 11 35
manual(m6) city miles per gallon 19 0 16.89 3.83 16 5.93 15 21 5.5 9 23
Overall city miles per gallon 234 0 16.86 4.26 17 4.45 14 19 5.0 9 35

Boxplot of city miles per gallon by type of transmission.
hwyBytransSummary <- data_summary(x = "hwy", by = "trans", data = mpg)

make_complete_output(hwyBytransSummary)
Summary statistics of highway miles per gallon by type of transmission.
type of transmission Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
auto(av) highway miles per gallon 5 0 27.80 2.59 27 2.97 26 30 4.00 25 31
auto(l3) highway miles per gallon 2 0 27.00 4.24 27 4.45 24 30 3.00 24 30
auto(l4) highway miles per gallon 83 0 21.96 5.64 22 7.41 17 26 9.00 14 41
auto(l5) highway miles per gallon 39 0 20.72 6.04 19 2.97 17 25 7.50 12 36
auto(l6) highway miles per gallon 6 0 20.00 2.37 19 1.48 18 23 3.75 18 23
auto(s4) highway miles per gallon 3 0 25.67 1.15 25 0.00 25 27 1.00 25 27
auto(s5) highway miles per gallon 3 0 25.33 6.66 27 5.93 18 31 6.50 18 31
auto(s6) highway miles per gallon 16 0 25.19 3.99 26 3.71 23 28 3.75 18 29
manual(m5) highway miles per gallon 58 0 26.29 5.99 26 4.45 24 29 5.00 16 44
manual(m6) highway miles per gallon 19 0 24.21 5.75 26 4.45 19 29 9.50 12 32
Overall highway miles per gallon 234 0 23.44 5.95 24 7.41 18 27 9.00 12 44

Boxplot of highway miles per gallon by type of transmission.
ctyByDrvSummary <- data_summary(x = "cty", by = "drv", data = mpg)

make_complete_output(ctyByDrvSummary)
Summary statistics of city miles per gallon by drive type.
drive type Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
front-wheel drive city miles per gallon 106 0 19.97 3.63 19 2.97 18 21 3 11 35
rear wheel drive city miles per gallon 25 0 14.08 2.22 15 1.48 12 15 3 11 18
4wd city miles per gallon 103 0 14.33 2.87 14 2.97 13 16 3 9 21
Overall city miles per gallon 234 0 16.86 4.26 17 4.45 14 19 5 9 35

Boxplot of city miles per gallon by drive type.
hwyByDrvSummary <- data_summary(x = "hwy", by = "drv", data = mpg)

make_complete_output(hwyByDrvSummary)
Summary statistics of highway miles per gallon by drive type.
drive type Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
front-wheel drive highway miles per gallon 106 0 28.16 4.21 28 2.97 26 29 3 17 44
rear wheel drive highway miles per gallon 25 0 21.00 3.66 21 5.93 17 24 7 15 26
4wd highway miles per gallon 103 0 19.17 4.08 18 2.97 17 22 5 12 28
Overall highway miles per gallon 234 0 23.44 5.95 24 7.41 18 27 9 12 44

Boxplot of highway miles per gallon by drive type.
ctyByflSummary <- data_summary(x = "cty", by = "fl", data = mpg)

make_complete_output(ctyByflSummary)
Summary statistics of city miles per gallon by fuel type.
fuel type Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
c city miles per gallon 1 0 24.00 NA 24 0.00 24 24 0.0 24 24
d city miles per gallon 5 0 25.60 9.53 29 8.90 17 33 16.0 14 35
e city miles per gallon 8 0 9.75 1.04 9 0.00 9 11 2.0 9 11
p city miles per gallon 52 0 17.37 3.04 18 2.97 15 19 3.5 11 23
r city miles per gallon 168 0 16.74 3.89 16 4.45 14 19 5.0 11 28
Overall city miles per gallon 234 0 16.86 4.26 17 4.45 14 19 5.0 9 35

Boxplot of city miles per gallon by fuel type.
hwyByflSummary <- data_summary(x = "hwy", by = "fl", data = mpg)

make_complete_output(hwyByflSummary)
Summary statistics of highway miles per gallon by fuel type.
fuel type Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
c highway miles per gallon 1 0 36.00 NA 36 0.00 36 36 0.00 36 36
d highway miles per gallon 5 0 33.60 13.05 41 4.45 22 44 22.00 17 44
e highway miles per gallon 8 0 13.25 1.91 12 0.00 12 14 2.25 12 17
p highway miles per gallon 52 0 25.23 3.93 26 2.97 25 28 3.25 14 31
r highway miles per gallon 168 0 22.99 5.51 23 7.41 17 27 9.25 15 37
Overall highway miles per gallon 234 0 23.44 5.95 24 7.41 18 27 9.00 12 44

Boxplot of highway miles per gallon by fuel type.
ctyByclassSummary <- data_summary(x = "cty", by = "class", data = mpg)

make_complete_output(ctyByclassSummary)
Summary statistics of city miles per gallon by type of car.
type of car Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
2seater city miles per gallon 5 0 15.40 0.55 15 0.00 15 16 1.00 15 16
compact city miles per gallon 47 0 20.13 3.39 20 2.97 18 21 3.00 15 33
midsize city miles per gallon 41 0 18.76 1.95 18 1.48 18 21 3.00 15 23
minivan city miles per gallon 11 0 15.82 1.83 16 1.48 15 17 1.50 11 18
pickup city miles per gallon 33 0 13.00 2.05 13 2.97 11 14 3.00 9 17
subcompact city miles per gallon 35 0 20.37 4.60 19 2.97 17 24 6.50 14 35
suv city miles per gallon 62 0 13.50 2.42 13 2.22 12 15 2.75 9 20
Overall city miles per gallon 234 0 16.86 4.26 17 4.45 14 19 5.00 9 35

Boxplot of city miles per gallon by type of car.
hwyByclassSummary <- data_summary(x = "hwy", by = "class", data = mpg)

make_complete_output(hwyByclassSummary)
Summary statistics of highway miles per gallon by type of car.
type of car Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
2seater highway miles per gallon 5 0 24.80 1.30 25.0 1.48 24 26 2 23 26
compact highway miles per gallon 47 0 28.30 3.78 27.0 2.97 26 29 3 23 44
midsize highway miles per gallon 41 0 27.29 2.14 27.0 1.48 26 29 3 23 32
minivan highway miles per gallon 11 0 22.36 2.06 23.0 1.48 22 24 2 17 24
pickup highway miles per gallon 33 0 16.88 2.27 17.0 1.48 16 18 2 12 22
subcompact highway miles per gallon 35 0 28.14 5.38 26.0 4.45 24 32 6 20 44
suv highway miles per gallon 62 0 18.13 2.98 17.5 2.22 17 19 2 12 27
Overall highway miles per gallon 234 0 23.44 5.95 24.0 7.41 18 27 9 12 44

Boxplot of highway miles per gallon by type of car.
ctyByCommentsSummary <- data_summary(x = "cty", by = "comments", data = mpg)

make_complete_output(ctyByCommentsSummary)
Summary statistics of city miles per gallon by some random comments.
some random comments Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
. city miles per gallon 26 0 15.42 3.94 15.0 2.97 13 17 4.0 9 28
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah city miles per gallon 23 0 17.04 3.23 17.0 2.97 15 19 3.5 11 22
Does it also fly? city miles per gallon 16 0 17.94 5.52 18.0 3.71 14 19 4.5 11 35
Does it come in green? city miles per gallon 23 0 18.39 4.31 19.0 2.97 14 21 6.5 11 28
I like this car! city miles per gallon 24 0 17.92 5.16 18.0 5.93 14 21 7.0 11 33
Meh. city miles per gallon 18 0 16.33 3.40 16.0 3.71 14 19 4.5 11 25
Missing city miles per gallon 25 0 15.84 5.16 15.0 4.45 12 19 7.0 9 26
This is the worst car ever! city miles per gallon 22 0 17.09 4.00 18.0 4.45 14 19 4.5 9 26
want cheese flavoured cars. city miles per gallon 33 0 16.91 3.95 16.0 2.97 14 20 6.0 11 29
Overall city miles per gallon 234 0 16.86 4.26 17.0 4.45 14 19 5.0 9 35
R NA Value city miles per gallon 24 0 16.17 3.34 15.5 3.71 14 19 5.0 11 22

Boxplot of city miles per gallon by some random comments.
hwyByCommentsSummary <- data_summary(x = "hwy", by = "comments", data = mpg)

make_complete_output(hwyByCommentsSummary)
Summary statistics of highway miles per gallon by some random comments.
some random comments Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
. highway miles per gallon 26 0 22.08 5.60 23.5 6.67 17 26 9.00 12 33
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah highway miles per gallon 23 0 24.09 4.95 26.0 4.45 20 29 8.50 15 31
Does it also fly? highway miles per gallon 16 0 24.75 7.33 25.5 5.19 17 28 9.75 14 44
Does it come in green? highway miles per gallon 23 0 25.26 5.50 27.0 4.45 19 29 9.50 16 37
I like this car! highway miles per gallon 24 0 24.75 7.25 26.0 7.41 17 29 12.00 15 44
Meh. highway miles per gallon 18 0 22.61 4.58 23.5 5.19 19 26 7.00 15 32
Missing highway miles per gallon 25 0 21.96 7.33 19.0 5.93 17 26 9.00 12 36
This is the worst car ever! highway miles per gallon 22 0 23.82 5.78 25.0 5.93 19 28 8.50 12 35
want cheese flavoured cars. highway miles per gallon 33 0 23.33 5.85 24.0 7.41 17 27 10.00 15 41
Overall highway miles per gallon 234 0 23.44 5.95 24.0 7.41 18 27 9.00 12 44
R NA Value highway miles per gallon 24 0 22.33 4.72 24.0 5.19 17 25 7.50 15 31

Boxplot of highway miles per gallon by some random comments.
ctyByPartySummary <- data_summary(x = "cty", by = "party", data = mpg)

make_complete_output(ctyByPartySummary)
Summary statistics of city miles per gallon by some random political parties.
some random political parties Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
republican city miles per gallon 56 0 17.29 4.52 17 5.19 14 21 7 9 29
democrat city miles per gallon 61 0 16.26 4.59 16 4.45 13 19 6 9 33
independent city miles per gallon 62 0 16.84 3.39 17 3.71 14 19 5 9 24
Overall city miles per gallon 234 0 16.86 4.26 17 4.45 14 19 5 9 35
R NA Value city miles per gallon 55 0 17.11 4.50 17 2.97 14 19 5 9 35

Boxplot of city miles per gallon by .
hwyByPartySummary <- data_summary(x = "hwy", by = "party", data = mpg)

make_complete_output(hwyByPartySummary)
Summary statistics of highway miles per gallon by some random political parties.
some random political parties Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
republican highway miles per gallon 56 0 23.57 6.42 24 7.41 17 29 12 12 41
democrat highway miles per gallon 61 0 22.38 6.25 21 7.41 17 27 10 12 44
independent highway miles per gallon 62 0 23.68 4.83 25 4.45 19 27 8 12 36
Overall highway miles per gallon 234 0 23.44 5.95 24 7.41 18 27 9 12 44
R NA Value highway miles per gallon 55 0 24.22 6.26 26 4.45 18 28 10 12 44

Boxplot of highway miles per gallon by .
ctyByMissSummary <- data_summary(x = "cty", by = "miss", data = mpg)

make_complete_output(ctyByMissSummary)
Summary statistics of city miles per gallon by an all missing variable.
an all missing variable Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
Overall city miles per gallon 234 0 16.86 4.26 17 4.45 14 19 5 9 35
R NA Value city miles per gallon 234 0 16.86 4.26 17 4.45 14 19 5 9 35

Boxplot of city miles per gallon by an all missing variable.
hwyByMissSummary <- data_summary(x = "hwy", by = "miss", data = mpg)

make_complete_output(hwyByMissSummary)
Summary statistics of highway miles per gallon by an all missing variable.
an all missing variable Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
Overall highway miles per gallon 234 0 23.44 5.95 24 7.41 18 27 9 12 44
R NA Value highway miles per gallon 234 0 23.44 5.95 24 7.41 18 27 9 12 44

Boxplot of highway miles per gallon by an all missing variable.

Other Examples

dpByYearSummary <- data_summary(x = "dp", by = "year", data = mpg[which(mpg$dp != "1000-05-02" | is.na(mpg$dp)), ], difftime_units = "weeks")

make_complete_output(dpByYearSummary)
Summary statistics of date of purchase (Date class) by year of manufacture.
year of manufacture Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
1999 date of purchase (Date class) 107 8.55 1999-06-23 14.72 weeks 1999-06-23 18.64 weeks 1999-03-27 1999-10-13 28.57143 weeks 1999-01-04 1999-12-24
2008 date of purchase (Date class) 106 8.62 2008-07-03 14.96 weeks 2008-07-12 18.43 weeks 2008-04-16 2008-10-18 26.42857 weeks 2008-01-02 2008-12-23
Overall date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24 74.98 weeks 1999-07-14 2008-09-01 476.71429 weeks 1999-01-04 2008-12-23

Boxplot of date of purchase (Date class) by year of manufacture.
dpByCommentsSummary <- data_summary(x = "dp", by = "comments", data = mpg[which(mpg$dp != "1000-05-02" | is.na(mpg$dp)), ], difftime_units = "weeks")

make_complete_output(dpByCommentsSummary)
Summary statistics of date of purchase (Date class) by some random comments.
some random comments Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
. date of purchase (Date class) 25 3.85 2004-08-08 237.07 weeks 2008-02-08 60.57 weeks 1999-09-19 2008-09-06 467.8571 weeks 1999-01-13 2008-11-27
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (Date class) 21 8.70 2003-10-28 243.86 weeks 1999-12-14 66.51 weeks 1999-06-28 2008-08-02 474.7143 weeks 1999-02-03 2008-12-23
Does it also fly? date of purchase (Date class) 13 18.75 2002-12-21 240.09 weeks 1999-10-13 52.31 weeks 1999-07-03 2008-11-10 488.2857 weeks 1999-01-14 2008-11-26
Does it come in green? date of purchase (Date class) 23 0.00 2004-01-22 241.15 weeks 2008-01-04 71.80 weeks 1999-04-26 2008-03-24 465.0000 weeks 1999-01-16 2008-12-08
I like this car! date of purchase (Date class) 20 13.04 2003-08-29 246.12 weeks 1999-11-13 54.96 weeks 1999-06-23 2008-09-23 482.8571 weeks 1999-02-12 2008-12-15
Meh. date of purchase (Date class) 17 5.56 2004-02-12 243.37 weeks 2008-01-27 51.47 weeks 1999-04-04 2008-05-27 477.2857 weeks 1999-01-05 2008-09-26
Missing date of purchase (Date class) 22 12.00 2005-03-23 234.82 weeks 2008-03-25 44.90 weeks 1999-08-24 2008-10-11 476.5714 weeks 1999-01-04 2008-11-15
This is the worst car ever! date of purchase (Date class) 21 4.55 2003-11-06 240.62 weeks 1999-11-24 52.31 weeks 1999-06-27 2008-07-17 472.5714 weeks 1999-03-22 2008-10-26
want cheese flavoured cars. date of purchase (Date class) 31 6.06 2003-04-02 235.66 weeks 1999-12-06 58.46 weeks 1999-05-07 2008-06-24 476.5714 weeks 1999-01-26 2008-12-09
Overall date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24 74.98 weeks 1999-07-14 2008-09-01 476.7143 weeks 1999-01-04 2008-12-23
R NA Value date of purchase (Date class) 20 16.67 2003-12-06 236.95 weeks 2003-12-24 337.72 weeks 1999-08-14 2008-06-25 462.5714 weeks 1999-01-07 2008-12-03

Boxplot of date of purchase (Date class) by some random comments.
rnByPartySummary <- data_summary(x = "rn", by = "party", data = mpg)

make_complete_output(rnByPartySummary)
Summary statistics of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 by some random political parties.
some random political parties Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
republican some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 41 26.79 10.39 6.15 11.78 4.28 5.67 13.95 8.28 -0.19 22.88
democrat some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 46 24.59 10.00 5.37 10.41 5.38 6.34 13.24 6.74 -2.54 23.46
independent some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 54 12.90 10.60 4.99 10.49 5.46 7.12 14.52 7.25 0.74 20.81
Overall some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 184 21.37 10.53 5.09 10.73 4.72 7.12 13.32 6.12 -2.54 23.46
R NA Value some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 43 21.82 11.16 3.71 10.72 2.65 8.99 12.81 3.72 4.42 22.44

Boxplot of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 by some random political parties.
rdifftimeByPartySummary <- data_summary(x = "rdifftime", by = "party", difftime_units = "weeks", data = mpg)

make_complete_output(rdifftimeByPartySummary)
Summary statistics of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks by some random political parties.
some random political parties Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
republican some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 45 19.64 9.50 weeks 5.91 weeks 10.35 weeks 6.54 weeks 4.96 weeks 13.06 weeks 8.11 weeks 0.00 weeks 23.49 weeks
democrat some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 52 14.75 9.31 weeks 4.49 weeks 9.38 weeks 4.37 weeks 6.44 weeks 12.68 weeks 6.23 weeks 0.00 weeks 18.28 weeks
independent some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 47 24.19 10.22 weeks 4.64 weeks 9.58 weeks 5.87 weeks 5.61 weeks 13.57 weeks 7.64 weeks 2.04 weeks 21.65 weeks
Overall some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 184 21.37 9.76 weeks 5.07 weeks 9.60 weeks 5.12 weeks 6.11 weeks 13.05 weeks 6.79 weeks 0.00 weeks 23.49 weeks
R NA Value some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 40 27.27 10.08 weeks 5.38 weeks 10.06 weeks 4.12 weeks 6.76 weeks 12.27 weeks 5.46 weeks 0.00 weeks 22.98 weeks

Boxplot of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks by some random political parties.
rdifftimeByCommentsSummary <- data_summary(x = "rdifftime", by = "comments", difftime_units = "weeks", data = mpg)

make_complete_output(rdifftimeByCommentsSummary)
Summary statistics of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks by some random comments.
some random comments Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
. some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 21 19.23 8.21 weeks 5.55 weeks 9.07 weeks 5.97 weeks 4.81 weeks 10.97 weeks 6.16 weeks 0.00 weeks 19.07 weeks
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 19 17.39 8.32 weeks 4.50 weeks 9.57 weeks 3.78 weeks 4.33 weeks 11.54 weeks 6.86 weeks 0.00 weeks 14.76 weeks
Does it also fly? some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 14 12.50 9.49 weeks 5.54 weeks 10.25 weeks 4.60 weeks 6.51 weeks 13.29 weeks 6.34 weeks 0.00 weeks 21.14 weeks
Does it come in green? some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 19 17.39 8.51 weeks 4.28 weeks 8.76 weeks 4.49 weeks 5.27 weeks 11.79 weeks 5.44 weeks 0.00 weeks 16.31 weeks
I like this car! some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 22 8.33 10.44 weeks 6.03 weeks 9.78 weeks 6.78 weeks 5.32 weeks 16.22 weeks 10.30 weeks 1.79 weeks 21.65 weeks
Meh. some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 13 27.78 10.21 weeks 4.88 weeks 10.56 weeks 4.61 weeks 7.13 weeks 12.60 weeks 5.47 weeks 3.88 weeks 21.71 weeks
Missing some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 19 24.00 11.44 weeks 5.29 weeks 12.24 weeks 5.19 weeks 6.65 weeks 15.38 weeks 8.17 weeks 3.57 weeks 23.49 weeks
This is the worst car ever! some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 17 22.73 9.28 weeks 4.29 weeks 9.63 weeks 4.80 weeks 6.76 weeks 13.05 weeks 6.29 weeks 0.36 weeks 13.93 weeks
want cheese flavoured cars. some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 26 21.21 10.88 weeks 3.62 weeks 11.19 weeks 3.00 weeks 9.01 weeks 13.16 weeks 3.91 weeks 2.53 weeks 17.07 weeks
Overall some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 184 21.37 9.76 weeks 5.07 weeks 9.60 weeks 5.12 weeks 6.11 weeks 13.05 weeks 6.79 weeks 0.00 weeks 23.49 weeks
R NA Value some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks 14 41.67 10.69 weeks 6.75 weeks 11.80 weeks 7.16 weeks 5.23 weeks 15.02 weeks 9.42 weeks 0.00 weeks 22.98 weeks

Boxplot of some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks by some random comments.
commentsByPartySummary <- data_summary(x = "comments", by = "party", data = mpg)

make_complete_output(commentsByPartySummary)
Summary statistics of some random comments by some random political parties.
some random comments republican democrat independent Overall R NA Value
. 3 (5.36%) 7 (11.48%) 9 (14.52%) 26 (11.11%) 7 (12.73%)
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah 5 (8.93%) 7 (11.48%) 6 (9.68%) 23 (9.83%) 5 (9.09%)
Does it also fly? 1 (1.79%) 6 (9.84%) 3 (4.84%) 16 (6.84%) 6 (10.91%)
Does it come in green? 8 (14.29%) 6 (9.84%) 6 (9.68%) 23 (9.83%) 3 (5.45%)
I like this car! 6 (10.71%) 6 (9.84%) 8 (12.9%) 24 (10.26%) 4 (7.27%)
Meh. 10 (17.86%) 5 (8.2%) 0 (0%) 18 (7.69%) 3 (5.45%)
Missing 5 (8.93%) 9 (14.75%) 6 (9.68%) 25 (10.68%) 5 (9.09%)
This is the worst car ever! 9 (16.07%) 4 (6.56%) 4 (6.45%) 22 (9.4%) 5 (9.09%)
want cheese flavoured cars. 7 (12.5%) 7 (11.48%) 10 (16.13%) 33 (14.1%) 9 (16.36%)
R NA Value 2 (3.57%) 4 (6.56%) 10 (16.13%) 24 (10.26%) 8 (14.55%)

Barplot of some random comments by some random political parties.

By By Data Summaries

ctyByCylByClassSummary <- data_summary(x = "cty", by = c("cyl", "class"), data = mpg)

make_complete_output(ctyByCylByClassSummary)
Summary statistics of city miles per gallon by number of cylinders by type of car.
number of cylinders by type of car Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
8, 2seater city miles per gallon 5 0 15.40 0.55 15.0 0.00 15 16 1.00 15 16
4, compact city miles per gallon 32 0 21.38 3.25 21.0 1.48 19 22 2.25 16 33
5, compact city miles per gallon 2 0 21.00 0.00 21.0 0.00 21 21 0.00 21 21
6, compact city miles per gallon 13 0 16.92 1.12 17.0 1.48 16 18 2.00 15 18
4, midsize city miles per gallon 16 0 20.50 1.63 21.0 0.74 19 21 2.00 18 23
6, midsize city miles per gallon 23 0 17.78 1.09 18.0 1.48 17 19 1.50 15 19
8, midsize city miles per gallon 2 0 16.00 0.00 16.0 0.00 16 16 0.00 16 16
4, minivan city miles per gallon 1 0 18.00 NA 18.0 0.00 18 18 0.00 18 18
6, minivan city miles per gallon 10 0 15.60 1.78 16.0 1.48 15 17 1.50 11 17
4, pickup city miles per gallon 3 0 16.00 1.00 16.0 1.48 15 17 1.00 15 17
6, pickup city miles per gallon 10 0 14.50 0.85 14.5 0.74 14 15 1.00 13 16
8, pickup city miles per gallon 20 0 11.80 1.58 12.0 1.48 11 13 2.00 9 14
4, subcompact city miles per gallon 21 0 22.86 4.19 21.0 2.97 19 25 6.00 19 35
5, subcompact city miles per gallon 2 0 20.00 0.00 20.0 0.00 20 20 0.00 20 20
6, subcompact city miles per gallon 7 0 17.00 0.82 17.0 1.48 16 18 1.00 16 18
8, subcompact city miles per gallon 5 0 14.80 0.45 15.0 0.00 15 15 0.00 14 15
4, suv city miles per gallon 8 0 18.00 1.77 18.0 2.22 16 19 1.75 15 20
6, suv city miles per gallon 16 0 14.50 1.10 14.5 0.74 14 15 1.00 13 17
8, suv city miles per gallon 38 0 12.13 1.36 12.0 1.48 11 13 2.00 9 14
Overall city miles per gallon 234 0 16.86 4.26 17.0 4.45 14 19 5.00 9 35

Boxplot of city miles per gallon by number of cylinders by type of car.
hwyByCylByClassSummary <- data_summary(x = "hwy", by = c("cyl", "class"), data = mpg)

make_complete_output(hwyByCylByClassSummary)
Summary statistics of highway miles per gallon by number of cylinders by type of car.
number of cylinders by type of car Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
8, 2seater highway miles per gallon 5 0 24.80 1.30 25.0 1.48 24 26 2.00 23 26
4, compact highway miles per gallon 32 0 29.47 3.93 29.0 2.97 27 30 3.25 25 44
5, compact highway miles per gallon 2 0 29.00 0.00 29.0 0.00 29 29 0.00 29 29
6, compact highway miles per gallon 13 0 25.31 1.18 25.0 1.48 25 26 1.00 23 27
4, midsize highway miles per gallon 16 0 29.19 1.80 29.0 2.97 27 31 3.25 26 32
6, midsize highway miles per gallon 23 0 26.26 1.14 26.0 0.00 26 27 0.50 24 29
8, midsize highway miles per gallon 2 0 24.00 1.41 24.0 1.48 23 25 1.00 23 25
4, minivan highway miles per gallon 1 0 24.00 NA 24.0 0.00 24 24 0.00 24 24
6, minivan highway miles per gallon 10 0 22.20 2.10 22.5 1.48 22 24 1.75 17 24
4, pickup highway miles per gallon 3 0 20.67 1.15 20.0 0.00 20 22 1.00 20 22
6, pickup highway miles per gallon 10 0 17.90 1.10 17.5 0.74 17 19 1.75 17 20
8, pickup highway miles per gallon 20 0 15.80 1.99 16.0 1.48 15 17 2.00 12 19
4, subcompact highway miles per gallon 21 0 30.81 5.12 29.0 4.45 26 33 7.00 26 44
5, subcompact highway miles per gallon 2 0 28.50 0.71 28.5 0.74 28 29 0.50 28 29
6, subcompact highway miles per gallon 7 0 24.71 0.95 24.0 0.00 24 26 1.50 24 26
8, subcompact highway miles per gallon 5 0 21.60 1.14 22.0 1.48 21 22 1.00 20 23
4, suv highway miles per gallon 8 0 23.75 2.60 24.5 2.22 20 25 3.00 20 27
6, suv highway miles per gallon 16 0 18.50 1.55 19.0 2.22 17 19 2.25 17 22
8, suv highway miles per gallon 38 0 16.79 1.91 17.0 1.48 15 18 2.75 12 20
Overall highway miles per gallon 234 0 23.44 5.95 24.0 7.41 18 27 9.00 12 44

Boxplot of highway miles per gallon by number of cylinders by type of car.
dpByCylByCommentsSummary <- data_summary(x = "dp", by = c("cyl", "comments"), difftime_units = "weeks", data = mpg[which(mpg$dp != "1000-05-02" | is.na(mpg$dp)), ])

make_complete_output(dpByCylByCommentsSummary)
Summary statistics of date of purchase (Date class) by number of cylinders by some random comments.
number of cylinders by some random comments Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min Max
4, . date of purchase (Date class) 5 0.00 2003-01-27 252.39 weeks 1999-10-26 54.64 weeks 1999-02-10 2008-02-08 469.285714 weeks 1999-02-10 2008-08-12
6, . date of purchase (Date class) 9 0.00 2004-08-21 241.15 weeks 2008-04-02 44.27 weeks 1999-08-28 2008-06-18 459.571429 weeks 1999-07-14 2008-10-28
8, . date of purchase (Date class) 10 9.09 2004-11-28 246.03 weeks 2008-02-07 61.53 weeks 1999-10-05 2008-09-06 465.571429 weeks 1999-01-13 2008-11-27
4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (Date class) 9 0.00 2002-08-10 241.71 weeks 1999-09-12 38.34 weeks 1999-03-15 2008-05-25 479.857143 weeks 1999-03-08 2008-12-23
6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (Date class) 7 12.50 2004-08-16 254.96 weeks 2008-05-13 31.13 weeks 1999-06-07 2008-08-02 477.714286 weeks 1999-03-19 2008-10-07
8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah date of purchase (Date class) 4 0.00 2004-01-07 274.68 weeks 2004-02-23 342.16 weeks 1999-02-03 2008-06-12 488.142857 weeks 1999-02-03 2008-09-09
4, Does it also fly? date of purchase (Date class) 5 0.00 2002-12-14 265.47 weeks 1999-08-06 43.21 weeks 1999-01-14 2008-02-14 474.000000 weeks 1999-01-14 2008-11-26
6, Does it also fly? date of purchase (Date class) 4 42.86 2001-09-28 225.84 weeks 1999-08-23 12.71 weeks 1999-07-03 NA NA weeks 1999-06-15 2008-03-25
8, Does it also fly? date of purchase (Date class) 4 0.00 2004-03-25 272.68 weeks 2004-04-06 347.46 weeks 1999-07-16 2008-08-25 475.428571 weeks 1999-07-16 2008-11-10
4, Does it come in green? date of purchase (Date class) 15 0.00 2003-07-23 243.88 weeks 1999-08-26 47.02 weeks 1999-03-24 2008-02-26 465.857143 weeks 1999-01-16 2008-10-13
6, Does it come in green? date of purchase (Date class) 3 0.00 2002-06-23 268.42 weeks 1999-09-09 27.75 weeks 1999-05-01 1999-09-09 18.714286 weeks 1999-05-01 2008-05-31
8, Does it come in green? date of purchase (Date class) 5 0.00 2006-07-09 217.62 weeks 2008-02-09 24.15 weeks 1999-02-01 2008-06-02 487.000000 weeks 1999-02-01 2008-12-08
4, I like this car! date of purchase (Date class) 8 11.11 2005-04-06 247.72 weeks 2008-07-29 20.33 weeks 1999-06-23 2008-09-23 482.857143 weeks 1999-06-08 2008-12-12
6, I like this car! date of purchase (Date class) 7 22.22 2002-01-30 232.78 weeks 1999-08-23 25.84 weeks 1999-04-23 2008-09-05 489.000000 weeks 1999-03-13 2008-09-05
8, I like this car! date of purchase (Date class) 4 0.00 2001-11-20 246.39 weeks 1999-09-27 30.61 weeks 1999-02-12 1999-11-28 41.285714 weeks 1999-02-12 2008-12-14
4, Meh. date of purchase (Date class) 6 0.00 1999-05-01 9.86 weeks 1999-04-25 8.47 weeks 1999-03-26 1999-05-16 7.285714 weeks 1999-01-25 1999-08-11
6, Meh. date of purchase (Date class) 6 0.00 2005-06-05 248.14 weeks 2008-04-27 26.58 weeks 1999-07-31 2008-05-08 457.714286 weeks 1999-01-05 2008-09-26
8, Meh. date of purchase (Date class) 5 16.67 2008-04-14 9.80 weeks 2008-04-15 11.44 weeks 2008-02-21 2008-05-27 13.714286 weeks 2008-01-27 2008-07-13
4, Missing date of purchase (Date class) 3 50.00 2002-08-26 280.92 weeks 1999-10-09 34.74 weeks 1999-10-09 NA NA weeks 1999-04-28 2008-11-11
6, Missing date of purchase (Date class) 5 0.00 2004-12-23 255.73 weeks 2008-05-24 21.18 weeks 1999-07-30 2008-08-09 471.142857 weeks 1999-07-30 2008-09-01
8, Missing date of purchase (Date class) 14 0.00 2005-11-13 226.66 weeks 2008-04-02 38.55 weeks 1999-10-04 2008-09-08 466.000000 weeks 1999-01-04 2008-11-15
4, This is the worst car ever! date of purchase (Date class) 7 0.00 2003-05-28 247.48 weeks 1999-11-24 50.62 weeks 1999-06-03 2008-02-10 453.428571 weeks 1999-03-30 2008-09-29
6, This is the worst car ever! date of purchase (Date class) 9 10.00 2002-08-03 237.70 weeks 1999-10-18 38.34 weeks 1999-04-20 2008-09-13 490.571429 weeks 1999-03-22 2008-10-26
8, This is the worst car ever! date of purchase (Date class) 5 0.00 2006-09-25 213.60 weeks 2008-07-04 16.10 weeks 1999-06-02 2008-09-18 485.142857 weeks 1999-06-02 2008-09-19
4, want cheese flavoured cars. date of purchase (Date class) 10 9.09 2003-02-13 238.91 weeks 1999-12-10 57.50 weeks 1999-06-09 2008-05-15 466.142857 weeks 1999-02-17 2008-10-31
6, want cheese flavoured cars. date of purchase (Date class) 13 0.00 2002-04-09 231.98 weeks 1999-08-31 36.85 weeks 1999-03-10 2008-06-24 484.857143 weeks 1999-01-26 2008-12-09
8, want cheese flavoured cars. date of purchase (Date class) 8 11.11 2005-01-02 240.53 weeks 2008-02-06 44.16 weeks 1999-05-21 2008-07-18 478.000000 weeks 1999-04-01 2008-10-18
Overall date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24 74.98 weeks 1999-07-14 2008-09-01 476.714286 weeks 1999-01-04 2008-12-23
R NA Value date of purchase (Date class) 20 16.67 2003-12-06 236.95 weeks 2003-12-24 337.72 weeks 1999-08-14 2008-06-25 462.571429 weeks 1999-01-07 2008-12-03

Boxplot of date of purchase (Date class) by number of cylinders by type of car.
commentsByCylByClassSummary <- data_summary(x = "comments", by = c("cyl", "class"), data = mpg)

make_complete_output(commentsByCylByClassSummary)
Summary statistics of some random comments by number of cylinders by type of car.
some random comments 4, 2seater 5, 2seater 6, 2seater 8, 2seater 4, compact 5, compact 6, compact 8, compact 4, midsize 5, midsize 6, midsize 8, midsize 4, minivan 5, minivan 6, minivan 8, minivan 4, pickup 5, pickup 6, pickup 8, pickup 4, subcompact 5, subcompact 6, subcompact 8, subcompact 4, suv 5, suv 6, suv 8, suv Overall
. 0 (NaN%) 0 (NaN%) 0 (NaN%) 1 (20%) 2 (6.25%) 0 (0%) 1 (7.69%) 0 (NaN%) 1 (6.25%) 0 (NaN%) 4 (17.39%) 0 (0%) 0 (0%) 0 (NaN%) 1 (10%) 0 (NaN%) 0 (0%) 0 (NaN%) 1 (10%) 4 (20%) 1 (4.76%) 1 (50%) 1 (14.29%) 1 (20%) 1 (12.5%) 0 (NaN%) 1 (6.25%) 5 (13.16%) 26 (11.11%)
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah 0 (NaN%) 0 (NaN%) 0 (NaN%) 0 (0%) 3 (9.38%) 2 (100%) 0 (0%) 0 (NaN%) 3 (18.75%) 0 (NaN%) 3 (13.04%) 0 (0%) 0 (0%) 0 (NaN%) 0 (0%) 0 (NaN%) 1 (33.33%) 0 (NaN%) 2 (20%) 1 (5%) 0 (0%) 0 (0%) 2 (28.57%) 1 (20%) 2 (25%) 0 (NaN%) 1 (6.25%) 2 (5.26%) 23 (9.83%)
Does it also fly? 0 (NaN%) 0 (NaN%) 0 (NaN%) 0 (0%) 1 (3.12%) 0 (0%) 0 (0%) 0 (NaN%) 1 (6.25%) 0 (NaN%) 4 (17.39%) 1 (50%) 0 (0%) 0 (NaN%) 1 (10%) 0 (NaN%) 0 (0%) 0 (NaN%) 0 (0%) 0 (0%) 3 (14.29%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (NaN%) 2 (12.5%) 3 (7.89%) 16 (6.84%)
Does it come in green? 0 (NaN%) 0 (NaN%) 0 (NaN%) 0 (0%) 7 (21.88%) 0 (0%) 1 (7.69%) 0 (NaN%) 3 (18.75%) 0 (NaN%) 0 (0%) 0 (0%) 0 (0%) 0 (NaN%) 0 (0%) 0 (NaN%) 0 (0%) 0 (NaN%) 0 (0%) 0 (0%) 3 (14.29%) 0 (0%) 0 (0%) 0 (0%) 2 (25%) 0 (NaN%) 2 (12.5%) 5 (13.16%) 23 (9.83%)
I like this car! 0 (NaN%) 0 (NaN%) 0 (NaN%) 0 (0%) 4 (12.5%) 0 (0%) 3 (23.08%) 0 (NaN%) 3 (18.75%) 0 (NaN%) 1 (4.35%) 0 (0%) 0 (0%) 0 (NaN%) 1 (10%) 0 (NaN%) 1 (33.33%) 0 (NaN%) 2 (20%) 2 (10%) 2 (9.52%) 1 (50%) 0 (0%) 0 (0%) 0 (0%) 0 (NaN%) 2 (12.5%) 2 (5.26%) 24 (10.26%)
Meh. 0 (NaN%) 0 (NaN%) 0 (NaN%) 1 (20%) 1 (3.12%) 0 (0%) 0 (0%) 0 (NaN%) 1 (6.25%) 0 (NaN%) 1 (4.35%) 0 (0%) 0 (0%) 0 (NaN%) 1 (10%) 0 (NaN%) 0 (0%) 0 (NaN%) 1 (10%) 1 (5%) 4 (19.05%) 0 (0%) 1 (14.29%) 0 (0%) 0 (0%) 0 (NaN%) 2 (12.5%) 4 (10.53%) 18 (7.69%)
Missing 0 (NaN%) 0 (NaN%) 0 (NaN%) 1 (20%) 4 (12.5%) 0 (0%) 0 (0%) 0 (NaN%) 0 (0%) 0 (NaN%) 2 (8.7%) 1 (50%) 0 (0%) 0 (NaN%) 1 (10%) 0 (NaN%) 0 (0%) 0 (NaN%) 0 (0%) 5 (25%) 2 (9.52%) 0 (0%) 0 (0%) 1 (20%) 0 (0%) 0 (NaN%) 2 (12.5%) 6 (15.79%) 25 (10.68%)
This is the worst car ever! 0 (NaN%) 0 (NaN%) 0 (NaN%) 0 (0%) 5 (15.62%) 0 (0%) 2 (15.38%) 0 (NaN%) 1 (6.25%) 0 (NaN%) 3 (13.04%) 0 (0%) 1 (100%) 0 (NaN%) 2 (20%) 0 (NaN%) 0 (0%) 0 (NaN%) 1 (10%) 2 (10%) 0 (0%) 0 (0%) 0 (0%) 1 (20%) 0 (0%) 0 (NaN%) 2 (12.5%) 2 (5.26%) 22 (9.4%)
want cheese flavoured cars. 0 (NaN%) 0 (NaN%) 0 (NaN%) 1 (20%) 3 (9.38%) 0 (0%) 3 (23.08%) 0 (NaN%) 2 (12.5%) 0 (NaN%) 4 (17.39%) 0 (0%) 0 (0%) 0 (NaN%) 2 (20%) 0 (NaN%) 1 (33.33%) 0 (NaN%) 2 (20%) 4 (20%) 4 (19.05%) 0 (0%) 1 (14.29%) 0 (0%) 1 (12.5%) 0 (NaN%) 1 (6.25%) 4 (10.53%) 33 (14.1%)
R NA Value 0 (NaN%) 0 (NaN%) 0 (NaN%) 1 (20%) 2 (6.25%) 0 (0%) 3 (23.08%) 0 (NaN%) 1 (6.25%) 0 (NaN%) 1 (4.35%) 0 (0%) 0 (0%) 0 (NaN%) 1 (10%) 0 (NaN%) 0 (0%) 0 (NaN%) 1 (10%) 1 (5%) 2 (9.52%) 0 (0%) 2 (28.57%) 1 (20%) 2 (25%) 0 (NaN%) 1 (6.25%) 5 (13.16%) 24 (10.26%)

Stacked barplot of some random comments by number of cylinders by type of car.

Summary Tables

invisible(setGeneric(name = "univariate_data_summary", def = function(object) standardGeneric("univariate_data_summary")))
setMethod(
    f = "univariate_data_summary",
    signature = "dataSummaries", 
    definition = function(object) 
    {
        if (all(c("Mean", "S Dev") %in% colnames(object@table))) {
            xlab <- paste("<b>", object@xLab, ", Mean (SD)</b>", sep = "")
            
            if (length(object@difftime_units) > 0) {
                res <- paste(object@table[, "Mean"], " (", object@table[, "S Dev"], " ", object@difftime_units, ")", sep = "")
            } else {
                res <- paste(object@table[, "Mean"], " (", object@table[, "S Dev"], ")", sep = "")
            }
            
            res <- data.frame(res)
            res$rname <- xlab
            res <- res[, c(2, 1)]
            colnames(res) <- c("", "")
            rownames(res) <- NULL
        } else {
            xlab <- paste("<b>", object@xLab, ", n (%)", "</b>", sep = "")
            res <- c("", object@table[, -1])
            res <- data.frame(res, stringsAsFactors = FALSE)
            res$rnames <- c(xlab, paste("&nbsp;&nbsp;", as.character(object@table[, 1]), sep = ""))
            res <- res[, c(2, 1)]
            colnames(res) <- c("", "")
            rownames(res) <- NULL
        }
        
        return(res)
    }
)

univariateDataSummaryList <- list(
    manuSummary, 
    modelSummary, 
    displSummary, 
    yearSummary, 
    dpSummary, 
    cylSummary, 
    transSummary, 
    drvSummary, 
    ctySummary, 
    hwySummary, 
    flSummary, 
    classSummary, 
    rnSummary, 
    rdifftimeSummary,
    logicalSummary,
    partySummary, 
    commentsSummary,
    missSummary
)

cars_univariate_data_summary <- do.call("rbind", lapply(univariateDataSummaryList, univariate_data_summary))

kable(cars_univariate_data_summary, caption = "Data summaries", booktabs = TRUE, escape = FALSE, format = "html", table.attr = "data-quarto-disable-processing=true") %>% 
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = TRUE, font_size = 14)
Data summaries
manufacturer, n (%)
  audi 18 (7.69%)
  chevrolet 19 (8.12%)
  dodge 37 (15.81%)
  ford 25 (10.68%)
  honda 9 (3.85%)
  hyundai 14 (5.98%)
  jeep 8 (3.42%)
  land rover 4 (1.71%)
  lincoln 3 (1.28%)
  mercury 4 (1.71%)
  nissan 13 (5.56%)
  pontiac 5 (2.14%)
  subaru 14 (5.98%)
  toyota 34 (14.53%)
  volkswagen 27 (11.54%)
model name, n (%)
  4runner 4wd 6 (2.56%)
  a4 7 (2.99%)
  a4 quattro 8 (3.42%)
  a6 quattro 3 (1.28%)
  altima 6 (2.56%)
  c1500 suburban 2wd 5 (2.14%)
  camry 7 (2.99%)
  camry solara 7 (2.99%)
  caravan 2wd 11 (4.7%)
  civic 9 (3.85%)
  corolla 5 (2.14%)
  corvette 5 (2.14%)
  dakota pickup 4wd 9 (3.85%)
  durango 4wd 7 (2.99%)
  expedition 2wd 3 (1.28%)
  explorer 4wd 6 (2.56%)
  f150 pickup 4wd 7 (2.99%)
  forester awd 6 (2.56%)
  grand cherokee 4wd 8 (3.42%)
  grand prix 5 (2.14%)
  gti 5 (2.14%)
  impreza awd 8 (3.42%)
  jetta 9 (3.85%)
  k1500 tahoe 4wd 4 (1.71%)
  land cruiser wagon 4wd 2 (0.85%)
  malibu 5 (2.14%)
  maxima 3 (1.28%)
  mountaineer 4wd 4 (1.71%)
  mustang 9 (3.85%)
  navigator 2wd 3 (1.28%)
  new beetle 6 (2.56%)
  passat 7 (2.99%)
  pathfinder 4wd 4 (1.71%)
  ram 1500 pickup 4wd 10 (4.27%)
  range rover 4 (1.71%)
  sonata 7 (2.99%)
  tiburon 7 (2.99%)
  toyota tacoma 4wd 7 (2.99%)
engine displacement, in litres, Mean (SD) 3.47 (1.29)
year of manufacture, n (%)
  1999 117 (50%)
  2008 117 (50%)
date of purchase (Date class), Mean (SD) 2003-12-21 (236.59 weeks)
number of cylinders, n (%)
  4 81 (34.62%)
  5 4 (1.71%)
  6 79 (33.76%)
  8 70 (29.91%)
type of transmission, n (%)
  auto(av) 5 (2.14%)
  auto(l3) 2 (0.85%)
  auto(l4) 83 (35.47%)
  auto(l5) 39 (16.67%)
  auto(l6) 6 (2.56%)
  auto(s4) 3 (1.28%)
  auto(s5) 3 (1.28%)
  auto(s6) 16 (6.84%)
  manual(m5) 58 (24.79%)
  manual(m6) 19 (8.12%)
drive type, n (%)
  front-wheel drive 106 (45.3%)
  rear wheel drive 25 (10.68%)
  4wd 103 (44.02%)
city miles per gallon, Mean (SD) 16.86 (4.26)
highway miles per gallon, Mean (SD) 23.44 (5.95)
fuel type, n (%)
  c 1 (0.43%)
  d 5 (2.14%)
  e 8 (3.42%)
  p 52 (22.22%)
  r 168 (71.79%)
type of car, n (%)
  2seater 5 (2.14%)
  compact 47 (20.09%)
  midsize 41 (17.52%)
  minivan 11 (4.7%)
  pickup 33 (14.1%)
  subcompact 35 (14.96%)
  suv 62 (26.5%)
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, Mean (SD) 10.53 (5.09)
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, Mean (SD) 9.76 (5.07 weeks)
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, and then set to TRUE if the difference is greater than 10, n (%)
  FALSE 96 (41.03%)
  TRUE 88 (37.61%)
  R NA Value 50 (21.37%)
some random political parties, n (%)
  republican 56 (23.93%)
  democrat 61 (26.07%)
  independent 62 (26.5%)
  R NA Value 55 (23.5%)
some random comments, n (%)
  . 26 (11.11%)
  Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah 23 (9.83%)
  Does it also fly? 16 (6.84%)
  Does it come in green? 23 (9.83%)
  I like this car! 24 (10.26%)
  Meh. 18 (7.69%)
  Missing 25 (10.68%)
  This is the worst car ever! 22 (9.4%)
  want cheese flavoured cars. 33 (14.1%)
  R NA Value 24 (10.26%)
an all missing variable, n (%)
  R NA Value 234 (100%)
invisible(setGeneric(name = "by_data_summary", def = function(object) standardGeneric("by_data_summary")))
setMethod(
    f = "by_data_summary",
    signature = "dataSummaries", 
    definition = function(object) 
    {
        if (all(c("Mean", "S Dev") %in% colnames(object@table))) {
            res <- t(object@table[, c("Mean", "S Dev")])
            
            if (length(object@difftime_units) > 0) {
                res <- paste(object@table[, "Mean"], " (", object@table[, "S Dev"], " ", object@difftime_units, ")", sep = "")
            } else {
                res <- paste(object@table[, "Mean"], " (", object@table[, "S Dev"], ")", sep = "")
            }
            
            res <- data.frame(t(res))
            res$label <- paste("<b>", object@xLab, ", Mean (SD)</b>", sep = "")
            rownames(res) <- NULL
            res <- res[, c(which(colnames(res) == "label"), which(!(1:dim(res)[2] %in% which(colnames(res) == "label"))))]
            colnames(res) <- c("", as.character(object@table[, 1]))
        } else {
            res <- object@table
            res[, 1] <- paste("&nbsp;&nbsp;", res[, 1], sep = "")
            res <- rbind("", res)
            res[1,1] <- paste("<b>", object@xLab, ", N (%)</b>", sep = "")
            colnames(res)[1] <- ""
        }
        
        return(res)
    }
)

byDataSummaryList <- list(
    ctyByDrvSummary,
    hwyByDrvSummary,
    cylByDrvSummary,
    dpByDrvSummary,
    rnByDrvSummary,
    rdifftimeByDrvSummary,
    logicalByDrvSummary,
    commentsByDrvSummary,
    missByDrvSummary
)

cars_by_data_summary <- do.call("rbind", lapply(byDataSummaryList, by_data_summary))

kable(cars_by_data_summary, caption = "Data summaries", booktabs = TRUE, escape = FALSE, format = "html", table.attr = "data-quarto-disable-processing=true") %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = TRUE, font_size = 14)
Data summaries
front-wheel drive rear wheel drive 4wd Overall
city miles per gallon, Mean (SD) 19.97 (3.63) 14.08 (2.22) 14.33 (2.87) 16.86 (4.26)
highway miles per gallon, Mean (SD) 28.16 (4.21) 21 (3.66) 19.17 (4.08) 23.44 (5.95)
number of cylinders, N (%)
  4 58 (54.72%) 0 (0%) 23 (22.33%) 81 (34.62%)
  5 4 (3.77%) 0 (0%) 0 (0%) 4 (1.71%)
  6 43 (40.57%) 4 (16%) 32 (31.07%) 79 (33.76%)
  8 1 (0.94%) 21 (84%) 48 (46.6%) 70 (29.91%)
date of purchase (Date class), Mean (SD) 2003-06-08 (235.2 weeks) 2004-09-28 (235.47 weeks) 2004-04-21 (237.55 weeks) 2003-12-21 (236.59 weeks)
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, Mean (SD) 10.5 (5.32) 11.59 (4.49) 10.33 (4.99) 10.53 (5.09)
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, Mean (SD) 10.57 (5.24 weeks) 8.43 (5.17 weeks) 9.19 (4.77 weeks) 9.76 (5.07 weeks)
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, and then set to TRUE if the difference is greater than 10, N (%)
  FALSE 40 (37.74%) 11 (44%) 45 (43.69%) 96 (41.03%)
  TRUE 46 (43.4%) 8 (32%) 34 (33.01%) 88 (37.61%)
  R NA Value 20 (18.87%) 6 (24%) 24 (23.3%) 50 (21.37%)
some random comments, N (%)
  . 9 (8.49%) 5 (20%) 12 (11.65%) 26 (11.11%)
  Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah 12 (11.32%) 3 (12%) 8 (7.77%) 23 (9.83%)
  Does it also fly? 11 (10.38%) 1 (4%) 4 (3.88%) 16 (6.84%)
  Does it come in green? 12 (11.32%) 1 (4%) 10 (9.71%) 23 (9.83%)
  I like this car! 13 (12.26%) 1 (4%) 10 (9.71%) 24 (10.26%)
  Meh. 6 (5.66%) 2 (8%) 10 (9.71%) 18 (7.69%)
  Missing 8 (7.55%) 3 (12%) 14 (13.59%) 25 (10.68%)
  This is the worst car ever! 14 (13.21%) 2 (8%) 6 (5.83%) 22 (9.4%)
  want cheese flavoured cars. 13 (12.26%) 2 (8%) 18 (17.48%) 33 (14.1%)
  R NA Value 8 (7.55%) 5 (20%) 11 (10.68%) 24 (10.26%)
an all missing variable, N (%)
  R NA Value 106 (100%) 25 (100%) 103 (100%) 234 (100%)
invisible(setGeneric(name = "bivariate_data_summary", def = function(object1, object2) standardGeneric("bivariate_data_summary")))
setMethod(
    f = "bivariate_data_summary",
    signature = "dataSummaries", 
    definition = function(object1, object2) 
    {
        rnames <- c(paste("<b>", object1@byLab, "</b>", sep = ""), paste("&nbsp;&nbsp;", object1@table[, 1], sep = ""))
        
        if (length(object1@difftime_units) > 0) {
            object1Res <- data.frame(c("", paste(object1@table[, "Mean"], " (", object1@table[, "S Dev"], " ", object1@difftime_units, ")", sep = "")), stringsAsFactors = FALSE)
        } else {
            object1Res <- data.frame(c("", paste(object1@table[, "Mean"], " (", object1@table[, "S Dev"], ")", sep = "")), stringsAsFactors = FALSE)
        }       
        
        if (length(object2@difftime_units) > 0) {
            object2Res <- data.frame(c("", paste(object2@table[, "Mean"], " (", object1@table[, "S Dev"], " ", object2@difftime_units, ")", sep = "")), stringsAsFactors = FALSE)
        } else {
            object2Res <- data.frame(c("", paste(object2@table[, "Mean"], " (", object2@table[, "S Dev"], ")", sep = "")), stringsAsFactors = FALSE)
        }           
        
        res <- cbind(object1Res, object2Res)
        res <- cbind(rnames, res)
        
        colnames(res) <- c("", paste(object1@xLab, ", Mean (SD)", sep = ""), paste(object2@xLab, ", Mean (SD)", sep = ""))
        
        return(res)
    }
)

cars_bivariate_data_summary <- rbind(
    bivariate_data_summary(ctyBymanuSummary, hwyBymanuSummary),
    bivariate_data_summary(ctyBymodelSummary, hwyBymodelSummary),
    bivariate_data_summary(ctyByYearSummary, hwyByYearSummary),
    bivariate_data_summary(ctyByCylSummary, hwyByCylSummary),
    bivariate_data_summary(ctyBytransSummary, hwyBytransSummary),
    bivariate_data_summary(ctyByDrvSummary, hwyByDrvSummary),
    bivariate_data_summary(ctyByflSummary, hwyByflSummary),
    bivariate_data_summary(ctyByclassSummary, hwyByclassSummary),
    bivariate_data_summary(ctyByPartySummary, hwyByPartySummary),
    bivariate_data_summary(ctyByCommentsSummary, hwyByCommentsSummary),
    bivariate_data_summary(ctyByMissSummary, hwyByMissSummary)
)

kable(cars_bivariate_data_summary, caption = "By data summaries of miles per gallons for city and highway.", booktabs = TRUE, escape = FALSE, format = "html", table.attr = "data-quarto-disable-processing=true") %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = TRUE, font_size = 14)
By data summaries of miles per gallons for city and highway.
city miles per gallon, Mean (SD) highway miles per gallon, Mean (SD)
manufacturer
  audi 17.61 (1.97) 26.44 (2.18)
  chevrolet 15 (2.92) 21.89 (5.11)
  dodge 13.14 (2.49) 17.95 (3.57)
  ford 14 (1.91) 19.36 (3.33)
  honda 24.44 (1.94) 32.56 (2.55)
  hyundai 18.64 (1.5) 26.86 (2.18)
  jeep 13.5 (2.51) 17.62 (3.25)
  land rover 11.5 (0.58) 16.5 (1.73)
  lincoln 11.33 (0.58) 17 (1)
  mercury 13.25 (0.5) 18 (1.15)
  nissan 18.08 (3.43) 24.62 (5.09)
  pontiac 17 (1) 26.4 (1.14)
  subaru 19.29 (0.91) 25.57 (1.16)
  toyota 18.53 (4.05) 24.91 (6.17)
  volkswagen 20.93 (4.56) 29.22 (5.32)
  Overall 16.86 (4.26) 23.44 (5.95)
model name
  4runner 4wd 15.17 (0.75) 18.83 (1.47)
  a4 18.86 (1.86) 28.29 (1.98)
  a4 quattro 17.12 (1.81) 25.75 (1.16)
  a6 quattro 16 (1) 24 (1)
  altima 20.67 (1.97) 28.67 (2.42)
  c1500 suburban 2wd 12.8 (1.3) 17.8 (2.17)
  camry 19.86 (1.46) 28.29 (2.14)
  camry solara 19.86 (1.77) 28.14 (2.19)
  caravan 2wd 15.82 (1.83) 22.36 (2.06)
  civic 24.44 (1.94) 32.56 (2.55)
  corolla 25.6 (1.67) 34 (2.65)
  corvette 15.4 (0.55) 24.8 (1.3)
  dakota pickup 4wd 12.78 (1.99) 17 (2.29)
  durango 4wd 11.86 (1.57) 16 (2)
  expedition 2wd 11.33 (0.58) 17.33 (0.58)
  explorer 4wd 13.67 (0.82) 18 (1.1)
  f150 pickup 4wd 13 (1) 16.43 (0.79)
  forester awd 18.83 (0.98) 25 (1.41)
  grand cherokee 4wd 13.5 (2.51) 17.62 (3.25)
  grand prix 17 (1) 26.4 (1.14)
  gti 20 (2) 27.4 (2.3)
  impreza awd 19.62 (0.74) 26 (0.76)
  jetta 21.22 (4.87) 29.11 (6.07)
  k1500 tahoe 4wd 12.5 (1.73) 16.25 (2.22)
  land cruiser wagon 4wd 12 (1.41) 16.5 (2.12)
  malibu 18.8 (1.92) 27.6 (1.82)
  maxima 18.67 (0.58) 25.33 (0.58)
  mountaineer 4wd 13.25 (0.5) 18 (1.15)
  mustang 15.89 (1.45) 23.22 (2.17)
  navigator 2wd 11.33 (0.58) 17 (1)
  new beetle 24 (6.51) 32.83 (7.63)
  passat 18.57 (1.9) 27.57 (1.51)
  pathfinder 4wd 13.75 (1.26) 18 (1.41)
  ram 1500 pickup 4wd 11.4 (1.51) 15.3 (1.89)
  range rover 11.5 (0.58) 16.5 (1.73)
  sonata 19 (1.41) 27.71 (2.06)
  tiburon 18.29 (1.6) 26 (2.08)
  toyota tacoma 4wd 15.57 (0.79) 19.43 (1.62)
  Overall 16.86 (4.26) 23.44 (5.95)
year of manufacture
  1999 17.02 (4.46) 23.43 (6.08)
  2008 16.7 (4.06) 23.45 (5.85)
  Overall 16.86 (4.26) 23.44 (5.95)
number of cylinders
  4 21.01 (3.5) 28.8 (4.52)
  5 20.5 (0.58) 28.75 (0.5)
  6 16.22 (1.77) 22.82 (3.69)
  8 12.57 (1.81) 17.63 (3.26)
  Overall 16.86 (4.26) 23.44 (5.95)
type of transmission
  auto(av) 20 (2) 27.8 (2.59)
  auto(l3) 21 (4.24) 27 (4.24)
  auto(l4) 15.94 (3.98) 21.96 (5.64)
  auto(l5) 14.72 (3.49) 20.72 (6.04)
  auto(l6) 13.67 (1.86) 20 (2.37)
  auto(s4) 18.67 (2.31) 25.67 (1.15)
  auto(s5) 17.33 (5.03) 25.33 (6.66)
  auto(s6) 17.38 (3.22) 25.19 (3.99)
  manual(m5) 19.26 (4.56) 26.29 (5.99)
  manual(m6) 16.89 (3.83) 24.21 (5.75)
  Overall 16.86 (4.26) 23.44 (5.95)
drive type
  front-wheel drive 19.97 (3.63) 28.16 (4.21)
  rear wheel drive 14.08 (2.22) 21 (3.66)
  4wd 14.33 (2.87) 19.17 (4.08)
  Overall 16.86 (4.26) 23.44 (5.95)
fuel type
  c 24 (NA) 36 (NA)
  d 25.6 (9.53) 33.6 (13.05)
  e 9.75 (1.04) 13.25 (1.91)
  p 17.37 (3.04) 25.23 (3.93)
  r 16.74 (3.89) 22.99 (5.51)
  Overall 16.86 (4.26) 23.44 (5.95)
type of car
  2seater 15.4 (0.55) 24.8 (1.3)
  compact 20.13 (3.39) 28.3 (3.78)
  midsize 18.76 (1.95) 27.29 (2.14)
  minivan 15.82 (1.83) 22.36 (2.06)
  pickup 13 (2.05) 16.88 (2.27)
  subcompact 20.37 (4.6) 28.14 (5.38)
  suv 13.5 (2.42) 18.13 (2.98)
  Overall 16.86 (4.26) 23.44 (5.95)
some random political parties
  republican 17.29 (4.52) 23.57 (6.42)
  democrat 16.26 (4.59) 22.38 (6.25)
  independent 16.84 (3.39) 23.68 (4.83)
  Overall 16.86 (4.26) 23.44 (5.95)
  R NA Value 17.11 (4.5) 24.22 (6.26)
some random comments
  . 15.42 (3.94) 22.08 (5.6)
  Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah 17.04 (3.23) 24.09 (4.95)
  Does it also fly? 17.94 (5.52) 24.75 (7.33)
  Does it come in green? 18.39 (4.31) 25.26 (5.5)
  I like this car! 17.92 (5.16) 24.75 (7.25)
  Meh. 16.33 (3.4) 22.61 (4.58)
  Missing 15.84 (5.16) 21.96 (7.33)
  This is the worst car ever! 17.09 (4) 23.82 (5.78)
  want cheese flavoured cars. 16.91 (3.95) 23.33 (5.85)
  Overall 16.86 (4.26) 23.44 (5.95)
  R NA Value 16.17 (3.34) 22.33 (4.72)
an all missing variable
  Overall 16.86 (4.26) 23.44 (5.95)
  R NA Value 16.86 (4.26) 23.44 (5.95)
cars_bivariate_time_data_summary <- rbind(
    bivariate_data_summary(ctyByPartySummary, rdifftimeByPartySummary),
    bivariate_data_summary(ctyByCommentsSummary, rdifftimeByCommentsSummary)
)

kable(cars_bivariate_time_data_summary, caption = "By data summaries of miles per gallons for city and random difference in time.", booktabs = TRUE, escape = FALSE, format = "html", table.attr = "data-quarto-disable-processing=true") %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = TRUE, font_size = 14)
By data summaries of miles per gallons for city and random difference in time.
city miles per gallon, Mean (SD) some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, Mean (SD)
some random political parties
  republican 17.29 (4.52) 9.5 (4.52 weeks)
  democrat 16.26 (4.59) 9.31 (4.59 weeks)
  independent 16.84 (3.39) 10.22 (3.39 weeks)
  Overall 16.86 (4.26) 9.76 (4.26 weeks)
  R NA Value 17.11 (4.5) 10.08 (4.5 weeks)
some random comments
  . 15.42 (3.94) 8.21 (3.94 weeks)
  Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah 17.04 (3.23) 8.32 (3.23 weeks)
  Does it also fly? 17.94 (5.52) 9.49 (5.52 weeks)
  Does it come in green? 18.39 (4.31) 8.51 (4.31 weeks)
  I like this car! 17.92 (5.16) 10.44 (5.16 weeks)
  Meh. 16.33 (3.4) 10.21 (3.4 weeks)
  Missing 15.84 (5.16) 11.44 (5.16 weeks)
  This is the worst car ever! 17.09 (4) 9.28 (4 weeks)
  want cheese flavoured cars. 16.91 (3.95) 10.88 (3.95 weeks)
  Overall 16.86 (4.26) 9.76 (4.26 weeks)
  R NA Value 16.17 (3.34) 10.69 (3.34 weeks)

R Session Information

sessionInfo()
R version 4.5.1 (2025-06-13)
Platform: aarch64-apple-darwin24.4.0
Running under: macOS Tahoe 26.0.1

Matrix products: default
BLAS:   /opt/homebrew/Cellar/openblas/0.3.30/lib/libopenblasp-r0.3.30.dylib 
LAPACK: /opt/homebrew/Cellar/r/4.5.1/lib/R/lib/libRlapack.dylib;  LAPACK version 3.12.1

locale:
[1] C.UTF-8/C.UTF-8/C.UTF-8/C/C.UTF-8/C.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
[1] dplyr_1.1.4      reshape2_1.4.4   Hmisc_5.2-4      ggplot2_4.0.0   
[5] kableExtra_1.4.0 bookdown_0.45    knitr_1.50      

loaded via a namespace (and not attached):
 [1] generics_0.1.4     renv_1.0.10        xml2_1.4.0         stringi_1.8.7     
 [5] digest_0.6.37      magrittr_2.0.4     evaluate_1.0.5     grid_4.5.1        
 [9] RColorBrewer_1.1-3 fastmap_1.2.0      plyr_1.8.9         jsonlite_2.0.0    
[13] nnet_7.3-20        backports_1.5.0    Formula_1.2-5      gridExtra_2.3     
[17] viridisLite_0.4.2  scales_1.4.0       textshaping_1.0.4  cli_3.6.5         
[21] rlang_1.1.6        base64enc_0.1-3    withr_3.0.2        yaml_2.3.10       
[25] tools_4.5.1        checkmate_2.3.3    htmlTable_2.4.3    colorspace_2.1-2  
[29] vctrs_0.6.5        R6_2.6.1           rpart_4.1.24       lifecycle_1.0.4   
[33] stringr_1.5.2      htmlwidgets_1.6.4  foreign_0.8-90     cluster_2.1.8.1   
[37] pkgconfig_2.0.3    pillar_1.11.1      gtable_0.3.6       Rcpp_1.1.0        
[41] glue_1.8.0         data.table_1.17.8  systemfonts_1.3.1  xfun_0.53         
[45] tibble_3.3.0       tidyselect_1.2.1   rstudioapi_0.17.1  farver_2.1.2      
[49] htmltools_0.5.8.1  labeling_0.4.3     rmarkdown_2.30     svglite_2.2.1     
[53] compiler_4.5.1     S7_0.2.0          

References

Harrell Jr, Frank E, with contributions from Charles Dupont, and many others. 2019. Hmisc: Harrell Miscellaneous. https://CRAN.R-project.org/package=Hmisc.
R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Wickham, Hadley. 2007. “Reshaping Data with the reshape Package.” Journal of Statistical Software 21 (12): 1–20. http://www.jstatsoft.org/v21/i12/.
———. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. http://ggplot2.org.
Wickham, Hadley, Romain François, Lionel Henry, and Kirill Müller. 2019. Dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.
Xie, Yihui. 2018. Bookdown: Authoring Books and Technical Documents with r Markdown. https://github.com/rstudio/bookdown.
———. 2019. Knitr: A General-Purpose Package for Dynamic Report Generation in r. https://yihui.name/knitr/.
Zhu, Hao. 2019. kableExtra: Construct Complex Table with ’Kable’ and Pipe Syntax. https://CRAN.R-project.org/package=kableExtra.