library("knitr")
library("bookdown")
library("kableExtra")
library("ggplot2")
library("Hmisc")
library("reshape2")
library("dplyr")
Data Summaries in R
Introduction
An essential part of any data analysis project is to understand the data at hand. For this task, we will create a function that takes as input a variable from the data, a categorical variable to describe by, and returns summary tables and plots.
This tutorial uses the R programming language (R Core Team 2019). All of the files needed to reproduce these results can be downloaded from the Git repository https://github.com/wkingc/data-summaries-r.
Required Libraries
The libraries knitr, bookdown, and kableExtra are used to generate the HTML output (Xie 2019, 2018; Zhu 2019). The ggplot2 library is loaded for the example data set that is used in this tutorial (Wickham 2016). The Hmisc library provides functionality needed to create variable labels (Harrell Jr, Charles Dupont, and others. 2019). The libraries reshape2 and dplyr are loaded for their data manipulation funtions (Wickham et al. 2019; Wickham 2007).
Example Data Setup
The data set used in this tutorial is mpg from the ggplot2 package. From the description in the manual:
This dataset contains a subset of the fuel economy data that the EPA makes available here. It contains only models which had a new release every year between 1999 and 2008 - this was used as a proxy for the popularity of the car.
set.seed(123)
data(mpg)
<- data.frame(mpg)
mpg
colnames(mpg)[which(colnames(mpg) == "manufacturer")] <- "manu"
$manu <- factor(mpg$manu)
mpg$model <- factor(mpg$model)
mpg$displ <- as.numeric(mpg$displ)
mpg$year <- factor(mpg$year, levels = c("1999", "2008"), ordered = TRUE)
mpg
$dp <- as.Date(NA, origin = "1970-01-01")
mpg$dp[which(mpg$year == "1999")] <- sample(seq(as.Date('1999-01-01', format = "%Y-%m-%d", origin = "1970-01-01"), as.Date('1999-12-25', format = "%Y-%m-%d", origin = "1970-01-01"), by="day"), dim(mpg)[1]/2)
mpg$dp[which(mpg$year == "2008")] <- sample(seq(as.Date('2008-01-01', format = "%Y-%m-%d", origin = "1970-01-01"), as.Date('2008-12-25', format = "%Y-%m-%d", origin = "1970-01-01"), by="day"), dim(mpg)[1]/2)
mpg$dp[sample(1:length(mpg$dp), size = 20)] <- NA
mpg$dp[10] <- as.Date('1000-05-02', format = "%Y-%m-%d", origin = "1970-01-01")
mpg
$dplt <- as.POSIXlt(NA, origin = "1970-01-01 0:0:0")
mpg$dplt[which(mpg$year == "1999")] <- sample(seq(as.POSIXlt('1999-01-01 0:0:0', format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01 0:0:0"), as.POSIXlt('1999-12-25 0:0:0', format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01 0:0:0"), by="min"), dim(mpg)[1]/2)
mpg$dplt[which(mpg$year == "2008")] <- sample(seq(as.POSIXlt('2008-01-01 0:0:0', format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01 0:0:0"), as.POSIXlt('2008-12-25 0:0:0', format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01 0:0:0"), by="sec"), dim(mpg)[1]/2)
mpg$dplt[sample(1:length(mpg$dplt), size = 20)] <- NA
mpg
$dpct <- as.POSIXct(NA, origin = "1970-01-01 0:0:0")
mpg$dpct[which(mpg$year == "1999")] <- sample(seq(as.POSIXct('1999-01-01 0:0:0', format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01 0:0:0"), as.POSIXct('1999-12-25 0:0:0', format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01 0:0:0"), by="min"), dim(mpg)[1]/2)
mpg$dpct[which(mpg$year == "2008")] <- sample(seq(as.POSIXct('2008-01-01 0:0:0', format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01 0:0:0"), as.POSIXct('2008-12-25 0:0:0', format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01 0:0:0"), by="sec"), dim(mpg)[1]/2)
mpg$dpct[sample(1:length(mpg$dpct), size = 20)] <- NA
mpg
$cyl <- factor(mpg$cyl, levels = c(4, 5, 6, 8), ordered = TRUE)
mpg
$trans <- factor(mpg$trans)
mpg$drv <- factor(mpg$drv, levels = c("f", "r", "4"), labels = c("front-wheel drive", "rear wheel drive", "4wd"))
mpg$fl <- factor(mpg$fl)
mpg$class <- factor(mpg$class)
mpg
$rn <- rnorm(dim(mpg)[1], mean = 10, sd = 5)
mpg$rn[sample(1:length(mpg$rn), size = 50)] <- NA
mpg
$rdifftime <- rnorm(dim(mpg)[1], mean = 10, sd = 5)
mpg$rdifftime[sample(1:length(mpg$rdifftime), size = 50)] <- NA
mpg$rdifftime <- as.difftime(mpg$rdifftime, units = "weeks")
mpg$rdifftime[which(mpg$rdifftime < 0)] <- 0
mpg
$logical <- mpg$rdifftime >= 10
mpg
$party <- factor(sample(c("republican", "democrat", "independent", NA), dim(mpg)[1], replace = TRUE), levels = c("republican", "democrat", "independent"))
mpg
$comments <- sample(c("I like this car!", "Meh.", "This is the worst car ever!", "Does it come in green?", "want cheese flavoured cars.", "Does it also fly?", "Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah", "Missing", ".", NA), dim(mpg)[1], replace = TRUE)
mpg
$miss <- NA
mpg
label(mpg$manu) <- "manufacturer"
label(mpg$model) <- "model name"
label(mpg$displ) <- "engine displacement, in litres"
label(mpg$year) <- "year of manufacture"
label(mpg$dp) <- "date of purchase (Date class)"
label(mpg$dplt) <- "date of purchase (POSIXlt class)"
label(mpg$dpct) <- "date of purchase (POSIXct class)"
label(mpg$cyl) <- "number of cylinders"
label(mpg$trans) <- "type of transmission"
label(mpg$drv) <- "drive type"
label(mpg$cty) <- "city miles per gallon"
label(mpg$hwy) <- "highway miles per gallon"
label(mpg$fl) <- "fuel type"
label(mpg$class) <- "type of car"
label(mpg$rn) <- "some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5"
label(mpg$rdifftime) <- "some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks"
label(mpg$logical) <- "some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, and then set to TRUE if the difference is greater than 10"
label(mpg$party) <- "some random political parties"
label(mpg$comments) <- "some random comments"
label(mpg$miss) <- "an all missing variable"
kable(head(mpg), caption = "Header of <b>mpg</b>.", booktabs = TRUE, escape = FALSE) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
manu | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | dp | dplt | dpct | rn | rdifftime | logical | party | comments | miss |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
audi | a4 | 1.8 | 1999 | 4 | auto(l5) | front-wheel drive | 18 | 29 | p | compact | 1999-06-28 | 1999-10-07 08:18:00 | 1999-10-27 08:00:00 | 8.935759 | 9.675375 weeks | FALSE | NA | Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | NA |
audi | a4 | 1.8 | 1999 | 4 | manual(m5) | front-wheel drive | 21 | 29 | p | compact | 1999-01-14 | 1999-04-28 07:00:00 | 1999-01-25 04:26:00 | 9.531816 | 13.782912 weeks | TRUE | democrat | Does it also fly? | NA |
audi | a4 | 2.0 | 2008 | 4 | manual(m6) | front-wheel drive | 20 | 31 | p | compact | 2008-02-08 | 2008-05-04 14:32:00 | 2008-01-06 09:57:35 | 9.566429 | 4.928852 weeks | FALSE | independent | . | NA |
audi | a4 | 2.0 | 2008 | 4 | auto(av) | front-wheel drive | 21 | 30 | p | compact | 2008-07-14 | 2008-02-11 12:43:49 | 2008-01-30 06:40:31 | 17.207309 | 6.539646 weeks | FALSE | democrat | Does it come in green? | NA |
audi | a4 | 2.8 | 1999 | 6 | auto(l5) | front-wheel drive | 16 | 26 | p | compact | 1999-07-14 | 1999-07-22 13:22:00 | 1999-03-02 01:18:00 | NA | NA weeks | NA | NA | . | NA |
audi | a4 | 2.8 | 1999 | 6 | manual(m5) | front-wheel drive | 18 | 26 | p | compact | 1999-11-02 | 1999-08-20 08:26:00 | 1999-04-03 22:19:00 | 14.172008 | 8.202642 weeks | FALSE | NA | This is the worst car ever! | NA |
Data Summary Function
Below are a set of functions I wrote to using S4 (see https://www.cyclismo.org/tutorial/R/s4Classes.html for a gentle introduction to object oriented programming in R), culminating into a single function called data_summary. The basic structure uses an object of class dataSummaries and then, based on the class of x, the dataSummariesSetup method applied to the dataSummaries class, returns an object of class dataSummariesCharacter, dataSummariesNumeric, dataSummariesDate, or dataSummariesDifftime. Each of these four output classes inherits from the dataSummaries class; thus any method written for dataSummaries also applies to the four classes that inherit from it.
As input the data_summary function takes a variable to summarize (x), an optional variable or variables (as a character string) to summarize by (by), the data (data), and the units to use for difftime if x refers to a Date, POSIXlt, POSIXct, or difftime object in the data.
As output, the function returns an object of class dataSummaries. The function has a show method and a method called make_output that generates knitr friendly output. The summary table and plot can also be accessed individually through their accessor functions, data_summary_table, and data_summary_plot, respectively.
setOldClass(c("ggplot", "gg"))
<- setClass(
dataSummaries "dataSummaries",
slots = c(
x = "character",
by = "character",
data = "data.frame",
difftime_units = "character",
xLab = "character",
byLab = "character",
table = "data.frame",
plot = "ANY"
),
prototype = list(
x = character(0),
by = character(0),
data = data.frame(),
difftime_units = character(0),
xLab = character(0),
byLab = character(0),
table = data.frame(),
plot = NULL
),
)
invisible(setValidity("dataSummaries", function(object) {
if (!is.null(object@plot) && !inherits(object@plot, "ggplot")) {
return("The 'plot' slot must be a ggplot object or NULL.")
}TRUE
}))
<- setClass(
dataSummariesCharacter "dataSummariesCharacter",
slots = c(
type = "character"
),
prototype = list(
type = character(0)
),
contains = "dataSummaries"
)
<- setClass(
dataSummariesNumeric "dataSummariesNumeric",
slots = c(
type = "character"
),
prototype = list(
type = character(0)
),
contains = "dataSummaries"
)
<- setClass(
dataSummariesDate "dataSummariesDate",
slots = c(
type = "character"
),
prototype = list(
type = character(0)
),
contains = "dataSummaries"
)
<- setClass(
dataSummariesDifftime "dataSummariesDifftime",
slots = c(
type = "character"
),
prototype = list(
type = character(0)
),
contains = "dataSummaries"
)
invisible(setGeneric(name = "dataSummariesSetup", def = function(object) standardGeneric("dataSummariesSetup")))
setMethod(
f = "dataSummariesSetup",
signature = "dataSummaries",
definition = function(object)
{= object@x
x = object@by
by = object@data
data
<- label(data[, x])
xLab colnames(data)[which(colnames(data) == x)] <- "var"
if (length(by) == 0) {
$by <- factor(data$by <- "")
datalabel(data$by) <- ""
<- label(data$by)
byLab else {
} $by <- interaction(data[, by], sep = ", ")
data<- paste(label(data[, by]), collapse = " by ")
byLab
<- data
overall $by <- "Overall"
overall<- rbind(data, overall)
data
}
<- data[, c("var", "by")]
data
if ("labelled" %in% class(data$var)) {
class(data$var) <- class(data$var)[(-1)*which(class(data$var) == "labelled")]
}
@xLab <- xLab
object@byLab <- byLab
object@data <- data
object
if (any(c("character", "factor", "logical") %in% class(data$var))) {
return(dataSummariesCharacter(object, type = class(data$var)))
else if (any(c("numeric", "integer") %in% class(data$var))) {
} return(dataSummariesNumeric(object, type = class(data$var)))
else if (any(c("Date", "POSIXlt", "POSIXct", "POSIXt") %in% class(data$var))) {
} if (length(object@difftime_units) == 0) stop("You need to specify the units for the difference in time. See help(difftime) for additional information.")
return(dataSummariesDate(object, type = class(data$var)))
else if ("difftime" %in% class(data$var)) {
} if (length(object@difftime_units) == 0) stop("You need to specify the units for the difference in time. See help(difftime) for additional information.")
return(dataSummariesDifftime(object, type = class(data$var)))
else {
} stop("x is an unsupported class")
}
}
)
invisible(setGeneric(name = "data_summary_switch", def = function(object) standardGeneric("data_summary_switch")))
setMethod(
f = "data_summary_switch",
signature = "dataSummariesCharacter",
definition = function(object)
{<- object@xLab
xLab <- object@byLab
byLab <- object@data
data
<- table(data$var, data$by, useNA = "ifany", dnn = c(xLab, byLab))
freqs
rownames(freqs)[which(is.na(rownames(freqs)))] <- "R NA Value"
colnames(freqs)[which(is.na(colnames(freqs)))] <- "R NA Value"
<- round(100*prop.table(freqs, 2), 2)
props
<- freqs
res for (i in 1:dim(freqs)[2]) {
<- paste(freqs[, i], " (", props[, i], "%)", sep = "")
res[, i]
}<- as.data.frame(res)
res colnames(res) <- c("var", "by", "freq")
<- dcast(res, var ~ by, value.var = "freq")
res colnames(res)[1] <- xLab
if (byLab == "") colnames(res)[2] <- "n (%)"
<- as.data.frame(props)
pData colnames(pData) <- c("var", "by", "freq")
<- as.character(pData$var)
levs <- nchar(levs)
tmp <- list()
strCombRes for (k in 1:length(levs)) {
<- list()
strRes = 0
j for (i in 1:ceiling(max(tmp)/30)) {
<- substr(levs[k], j, 30*i)
strRes[[i]] = 30*i + 1
j
}<- unlist(strRes)
strCombRes[[k]]
}
<- function(x) {
foo if (!(length(which(x == "")) == 0)) x <- x[-1*which(x == "")]
<- paste(x, collapse = "\n")
x
return(x)
}
<- unlist(lapply(strCombRes, foo))
levs
$names <- factor(rownames(pData), levels = rownames(pData), labels = levs)
pData<- pData[, -1]
pData
<- colorRampPalette(c("#e41a1c","#377eb8","#4daf4a","#984ea3","#ff7f00"))
colfunc <- colfunc(length(levels(pData$names)))
colors
= ggplot(data = pData, aes(x = by, y = freq, fill = names)) +
p scale_fill_manual(values = colors) +
geom_bar(stat = "identity") +
xlab(paste(strwrap(xLab, width = 60), collapse = "\n")) +
ylab("Percent") +
theme(
axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill = NA, size = 1),
axis.text = element_text(size = 12),
axis.text.x = element_text(angle = 50, hjust = 1),
axis.title = element_text(size = 12),
legend.title = element_blank(),
legend.position = "right",
panel.grid = element_line(color = "lightgray"),
panel.background = element_rect(fill = "white", colour = "white"))
@table <- res
object@plot <- p
object
return(object)
}
)
setMethod(
f = "data_summary_switch",
signature = "dataSummariesNumeric",
definition = function(object)
{<- object@xLab
xLab <- object@byLab
byLab <- object@data
data
if (any(is.na(data$by))) {
<- levels(data$by)
byLevs $by <- as.character(data$by)
data
$by[which(is.na(as.character(data$by)))] <- "R NA Value"
data$by <- factor(data$by, levels = c(byLevs, "R NA Value"))
data
}
<- function(x) res <- round((length(which(is.na(x)))/length(x))*100, 2)
percMiss
<- data %>%
res group_by(by) %>%
summarize(
label = xLab,
n = length(na.omit(var)),
miss = percMiss(var),
mean = round(mean(var, na.rm = TRUE), 2),
sd = round(sd(var, na.rm = TRUE), 2),
median = round(median(var, na.rm = TRUE), 2),
mad = round(mad(var, na.rm = TRUE), 2),
q25 = round(quantile(var, probs = 0.25, na.rm = TRUE, type = 1), 2),
q75 = round(quantile(var, probs = 0.75, na.rm = TRUE, type = 1), 2),
IQR = round(IQR(var, na.rm = TRUE), 2),
min = round(min(var, na.rm = TRUE), 2),
max = round(max(var, na.rm = TRUE), 2)
)
<- data.frame(res)
res
colnames(res) <- c(byLab, "Label", "N", "P NA", "Mean", "S Dev", "Med", "MAD", "25th P", "75th P", "IQR", "Min", "Max")
<- na.omit(data.frame(data[, c("var", "by")]))
pData
= ggplot(data = pData, aes(x = by, y = var)) +
p geom_boxplot(position = position_dodge(1), fill = "#2c7bb6") +
xlab(byLab) +
ylab(paste(strwrap(xLab, width = 40), collapse = "\n")) +
theme(
axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill = NA, size = 1),
legend.position = "none",
axis.text = element_text(size = 12),
axis.text.x = element_text(angle = 50, hjust = 1),
axis.title = element_text(size = 12),
panel.grid = element_line(color = "lightgray"),
panel.background = element_rect(fill = "white", colour = "white"))
@table <- res
object@plot <- p
object
return(object)
}
)
setMethod(
f = "data_summary_switch",
signature = "dataSummariesDate",
definition = function(object)
{<- object@xLab
xLab <- object@byLab
byLab <- object@data
data <- object@difftime_units
difftime_units
if (any(is.na(data$by))) {
<- levels(data$by)
byLevs $by <- as.character(data$by)
data
$by[which(is.na(as.character(data$by)))] <- "R NA Value"
data$by <- factor(data$by, levels = c(byLevs, "R NA Value"))
data
}
<- function(x) round((length(which(is.na(x)))/length(x))*100, 2)
percMiss
<- function(x) {
sdDate <- difftime(x, mean(x, na.rm = TRUE), units = "secs")
res <- as.numeric(as.character(res))
res <- sd(res, na.rm = TRUE)
res <- as.difftime(res, units = "secs")
res units(res) <- difftime_units
return(res)
}
sdDate(data$var)
<- function(x) {
madDate <- difftime(x, mean(x, na.rm = TRUE), units = "secs")
res <- as.numeric(as.character(res))
res <- mad(res, na.rm = TRUE)
res <- as.difftime(res, units = "secs")
res units(res) <- difftime_units
return(res)
}
<- function(x, probs){
dquantile <- sort(x)
sx <- round(probs*length(x))
pos return(sx[pos])
}
<- function(x) dquantile(x, probs = 0.25)
q25Date
<- function(x) dquantile(x, probs = 0.75)
q75Date
<- function(x) {
IQRdate <- difftime(dquantile(x, probs = 0.75), dquantile(x, probs = 0.25), units = "secs")
res units(res) <- difftime_units
return(res)
}
<- data %>%
res group_by(by) %>%
summarize(
label = xLab,
n = length(na.omit(var)),
miss = percMiss(var),
mean = mean(var, na.rm = TRUE),
sd = round(sdDate(var), 2),
median = median(var, na.rm = TRUE),
mad = round(madDate(var), 2),
q25 = q25Date(var),
q75 = q75Date(var),
IQR = IQRdate(var),
min = min(var, na.rm = TRUE),
max = max(var, na.rm = TRUE)
)
<- data.frame(res)
res
colnames(res) <- c(byLab, "Label", "N", "P NA", "Mean", "S Dev", "Med", "MAD", "25th P", "75th P", "IQR", "Min", "Max")
<- na.omit(data.frame(data[, c("var", "by")]))
pData
if ("POSIXlt" %in% class(pData$var)) pData$var <- as.POSIXct(pData$var)
= ggplot(data = pData, aes(x = by, y = var)) +
p geom_boxplot(position = position_dodge(1), fill = "#2c7bb6") +
xlab(byLab) +
ylab(paste(strwrap(xLab, width = 40), collapse = "\n")) +
theme(
axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill = NA, size = 1),
legend.position = "none",
axis.text = element_text(size = 12),
axis.text.x = element_text(angle = 50, hjust = 1),
axis.title = element_text(size = 12),
panel.grid = element_line(color = "lightgray"),
panel.background = element_rect(fill = "white", colour = "white"))
@table <- res
object@plot <- p
object
return(object)
}
)
setMethod(
f = "data_summary_switch",
signature = "dataSummariesDifftime",
definition = function(object)
{<- object@xLab
xLab <- object@byLab
byLab <- object@data
data <- object@difftime_units
difftime_units
if (any(is.na(data$by))) {
<- levels(data$by)
byLevs $by <- as.character(data$by)
data
$by[which(is.na(as.character(data$by)))] <- "R NA Value"
data$by <- factor(data$by, levels = c(byLevs, "R NA Value"))
data
}
<- function(x) res <- round((length(which(is.na(x)))/length(x))*100, 2)
percMiss
units(data$var) <- "days"
<- function(x) {
meanDate <- mean(x, na.rm = TRUE)
res units(res) <- difftime_units
return(res)
}
<- function(x) {
medianDate <- median(x, na.rm = TRUE)
res units(res) <- difftime_units
return(res)
}
<- function(x) {
sdDate <- as.difftime(sd(as.numeric(x), na.rm = TRUE), format = "%X", units = "days")
res units(res) <- difftime_units
return(res)
}
<- function(x) {
madDate <- as.difftime(mad(as.numeric(x), na.rm = TRUE), format = "%X", units = "days")
res units(res) <- difftime_units
return(res)
}
<- function(x) {
q25Date <- as.difftime(quantile(as.numeric(x), probs = 0.25, na.rm = TRUE, type = 1), units = "days")
res units(res) <- difftime_units
return(res)
}
<- function(x) {
q75Date <- as.difftime(quantile(as.numeric(x), probs = 0.75, na.rm = TRUE, type = 1), units = "days")
res units(res) <- difftime_units
return(res)
}
<- function(x) {
IQRdate <- as.difftime(IQR(as.numeric(x), na.rm = TRUE), format = "%X", units = "days")
res units(res) <- difftime_units
return(res)
}
<- function(x) {
minDate <- as.difftime(min(as.numeric(x), na.rm = TRUE), format = "%X", units = "days")
res units(res) <- difftime_units
return(res)
}
<- function(x) {
maxDate <- as.difftime(max(as.numeric(x), na.rm = TRUE), format = "%X", units = "days")
res units(res) <- difftime_units
return(res)
}
<- data %>%
res group_by(by) %>%
summarize(
label = xLab,
n = length(na.omit(var)),
miss = percMiss(var),
mean = round(meanDate(var), 2),
sd = round(sdDate(var), 2),
median = round(medianDate(var), 2),
mad = round(madDate(var), 2),
q25 = round(q25Date(var), 2),
q75 = round(q75Date(var), 2),
IQR = round(IQRdate(var), 2),
min = round(minDate(var), 2),
max = round(maxDate(var), 2)
)
<- data.frame(res)
res
colnames(res) <- c(byLab, "Label", "N", "P NA", "Mean", "S Dev", "Med", "MAD", "25th P", "75th P", "IQR", "Min", "Max")
<- na.omit(data.frame(data[, c("var", "by")]))
pData units(pData$var) <- difftime_units
= ggplot(data = pData, aes(x = by, y = var)) +
p geom_boxplot(position = position_dodge(1), fill = "#2c7bb6") +
xlab(byLab) +
ylab(paste(strwrap(xLab, width = 40), collapse = "\n")) +
theme(
axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill = NA, size = 1),
legend.position = "none",
axis.text = element_text(size = 12),
axis.text.x = element_text(angle = 50, hjust = 1),
axis.title = element_text(size = 12),
panel.grid = element_line(color = "lightgray"),
panel.background = element_rect(fill = "white", colour = "white"))
@table <- res
object@plot <- p
object
return(object)
}
)
setMethod(
f = "show",
signature = "dataSummaries",
definition = function(object)
{print(object@table)
print(object@plot)
}
)
invisible(setGeneric(name = "make_kable_output", def = function(object) standardGeneric("make_kable_output")))
setMethod(
f = "make_kable_output",
signature = "dataSummaries",
definition = function(object)
{if (object@byLab == "") {
print(
kable(
@table, caption = paste("Summary statistics of ", object@xLab, ".", sep = ""), booktabs = TRUE, table.attr = "data-quarto-disable-processing=true") %>%
objectkable_styling(bootstrap_options = c("striped", "hover"), full_width = TRUE, font_size = 14))
else {
} print(
kable(
@table, caption = paste("Summary statistics of ", object@xLab, " by ", object@byLab, ".", sep = ""), booktabs = TRUE, table.attr = "data-quarto-disable-processing=true") %>%
objectkable_styling(bootstrap_options = c("striped", "hover"), full_width = TRUE, font_size = 14))
}
}
)
invisible(setGeneric(name = "make_complete_output", def = function(object) standardGeneric("make_complete_output")))
setMethod(
f = "make_complete_output",
signature = "dataSummaries",
definition = function(object)
{if (object@byLab == "") {
print(
kable(
@table, caption = paste("Summary statistics of ", object@xLab, ".", sep = ""), booktabs = TRUE, table.attr = "data-quarto-disable-processing=true") %>%
objectkable_styling(bootstrap_options = c("striped", "hover"), full_width = TRUE, font_size = 14))
else {
} print(
kable(
@table, caption = paste("Summary statistics of ", object@xLab, " by ", object@byLab, ".", sep = ""), booktabs = TRUE, table.attr = "data-quarto-disable-processing=true") %>%
objectkable_styling(bootstrap_options = c("striped", "hover"), full_width = TRUE, font_size = 14))
}
print(object@plot)
}
)
invisible(setGeneric(name = "data_summary_table", def = function(object) standardGeneric("data_summary_table")))
setMethod(
f = "data_summary_table",
signature = "dataSummaries",
definition = function(object)
{@table
object
}
)
invisible(setGeneric(name = "data_summary_plot", def = function(object) standardGeneric("data_summary_plot")))
setMethod(
f = "data_summary_plot",
signature = "dataSummaries",
definition = function(object)
{@plot
object
}
)
<- function(x, by = character(0), data, difftime_units = character(0)) {
data_summary = dataSummaries(x = x, data = data, by = by, difftime_units = difftime_units)
object = dataSummariesSetup(object)
object = data_summary_switch(object)
object }
Examples
show(cylSummaryExample)
number of cylinders n (%)
1 4 81 (34.62%)
2 5 4 (1.71%)
3 6 79 (33.76%)
4 8 70 (29.91%)
data_summary_table(cylSummaryExample)
number of cylinders n (%)
1 4 81 (34.62%)
2 5 4 (1.71%)
3 6 79 (33.76%)
4 8 70 (29.91%)
data_summary_plot(cylSummaryExample)
make_kable_output(cylSummaryExample)
number of cylinders | n (%) |
---|---|
4 | 81 (34.62%) |
5 | 4 (1.71%) |
6 | 79 (33.76%) |
8 | 70 (29.91%) |
make_complete_output(cylSummaryExample)
number of cylinders | n (%) |
---|---|
4 | 81 (34.62%) |
5 | 4 (1.71%) |
6 | 79 (33.76%) |
8 | 70 (29.91%) |
show(cylByYearSummaryExample)
number of cylinders 1999 2008 Overall
1 4 45 (38.46%) 36 (30.77%) 81 (34.62%)
2 5 0 (0%) 4 (3.42%) 4 (1.71%)
3 6 45 (38.46%) 34 (29.06%) 79 (33.76%)
4 8 27 (23.08%) 43 (36.75%) 70 (29.91%)
data_summary_table(cylByYearSummaryExample)
number of cylinders 1999 2008 Overall
1 4 45 (38.46%) 36 (30.77%) 81 (34.62%)
2 5 0 (0%) 4 (3.42%) 4 (1.71%)
3 6 45 (38.46%) 34 (29.06%) 79 (33.76%)
4 8 27 (23.08%) 43 (36.75%) 70 (29.91%)
data_summary_plot(cylByYearSummaryExample)
make_kable_output(cylByYearSummaryExample)
number of cylinders | 1999 | 2008 | Overall |
---|---|---|---|
4 | 45 (38.46%) | 36 (30.77%) | 81 (34.62%) |
5 | 0 (0%) | 4 (3.42%) | 4 (1.71%) |
6 | 45 (38.46%) | 34 (29.06%) | 79 (33.76%) |
8 | 27 (23.08%) | 43 (36.75%) | 70 (29.91%) |
make_complete_output(cylByYearSummaryExample)
number of cylinders | 1999 | 2008 | Overall |
---|---|---|---|
4 | 45 (38.46%) | 36 (30.77%) | 81 (34.62%) |
5 | 0 (0%) | 4 (3.42%) | 4 (1.71%) |
6 | 45 (38.46%) | 34 (29.06%) | 79 (33.76%) |
8 | 27 (23.08%) | 43 (36.75%) | 70 (29.91%) |
show(cylByYearByPartySummaryExample)
number of cylinders 1999, republican 2008, republican 1999, democrat
1 4 14 (45.16%) 9 (36%) 12 (40%)
2 5 0 (0%) 1 (4%) 0 (0%)
3 6 12 (38.71%) 5 (20%) 7 (23.33%)
4 8 5 (16.13%) 10 (40%) 11 (36.67%)
2008, democrat 1999, independent 2008, independent Overall R NA Value
1 8 (25.81%) 9 (32.14%) 12 (35.29%) 81 (34.62%) 17 (30.91%)
2 2 (6.45%) 0 (0%) 0 (0%) 4 (1.71%) 1 (1.82%)
3 6 (19.35%) 13 (46.43%) 12 (35.29%) 79 (33.76%) 24 (43.64%)
4 15 (48.39%) 6 (21.43%) 10 (29.41%) 70 (29.91%) 13 (23.64%)
data_summary_table(cylByYearByPartySummaryExample)
number of cylinders 1999, republican 2008, republican 1999, democrat
1 4 14 (45.16%) 9 (36%) 12 (40%)
2 5 0 (0%) 1 (4%) 0 (0%)
3 6 12 (38.71%) 5 (20%) 7 (23.33%)
4 8 5 (16.13%) 10 (40%) 11 (36.67%)
2008, democrat 1999, independent 2008, independent Overall R NA Value
1 8 (25.81%) 9 (32.14%) 12 (35.29%) 81 (34.62%) 17 (30.91%)
2 2 (6.45%) 0 (0%) 0 (0%) 4 (1.71%) 1 (1.82%)
3 6 (19.35%) 13 (46.43%) 12 (35.29%) 79 (33.76%) 24 (43.64%)
4 15 (48.39%) 6 (21.43%) 10 (29.41%) 70 (29.91%) 13 (23.64%)
data_summary_plot(cylByYearByPartySummaryExample)
make_kable_output(cylByYearByPartySummaryExample)
number of cylinders | 1999, republican | 2008, republican | 1999, democrat | 2008, democrat | 1999, independent | 2008, independent | Overall | R NA Value |
---|---|---|---|---|---|---|---|---|
4 | 14 (45.16%) | 9 (36%) | 12 (40%) | 8 (25.81%) | 9 (32.14%) | 12 (35.29%) | 81 (34.62%) | 17 (30.91%) |
5 | 0 (0%) | 1 (4%) | 0 (0%) | 2 (6.45%) | 0 (0%) | 0 (0%) | 4 (1.71%) | 1 (1.82%) |
6 | 12 (38.71%) | 5 (20%) | 7 (23.33%) | 6 (19.35%) | 13 (46.43%) | 12 (35.29%) | 79 (33.76%) | 24 (43.64%) |
8 | 5 (16.13%) | 10 (40%) | 11 (36.67%) | 15 (48.39%) | 6 (21.43%) | 10 (29.41%) | 70 (29.91%) | 13 (23.64%) |
make_complete_output(cylByYearByPartySummaryExample)
number of cylinders | 1999, republican | 2008, republican | 1999, democrat | 2008, democrat | 1999, independent | 2008, independent | Overall | R NA Value |
---|---|---|---|---|---|---|---|---|
4 | 14 (45.16%) | 9 (36%) | 12 (40%) | 8 (25.81%) | 9 (32.14%) | 12 (35.29%) | 81 (34.62%) | 17 (30.91%) |
5 | 0 (0%) | 1 (4%) | 0 (0%) | 2 (6.45%) | 0 (0%) | 0 (0%) | 4 (1.71%) | 1 (1.82%) |
6 | 12 (38.71%) | 5 (20%) | 7 (23.33%) | 6 (19.35%) | 13 (46.43%) | 12 (35.29%) | 79 (33.76%) | 24 (43.64%) |
8 | 5 (16.13%) | 10 (40%) | 11 (36.67%) | 15 (48.39%) | 6 (21.43%) | 10 (29.41%) | 70 (29.91%) | 13 (23.64%) |
show(ctySummaryExample)
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min
1 city miles per gallon 234 0 16.86 4.26 17 4.45 14 19 5 9
Max
1 35
data_summary_table(ctySummaryExample)
Label N P NA Mean S Dev Med MAD 25th P 75th P IQR Min
1 city miles per gallon 234 0 16.86 4.26 17 4.45 14 19 5 9
Max
1 35
data_summary_plot(ctySummaryExample)
make_kable_output(ctySummaryExample)
Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17 | 4.45 | 14 | 19 | 5 | 9 | 35 |
make_complete_output(ctySummaryExample)
Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17 | 4.45 | 14 | 19 | 5 | 9 | 35 |
show(ctyByCylSummaryExample)
number of cylinders Label N P NA Mean S Dev Med MAD
1 4 city miles per gallon 81 0 21.01 3.50 21.0 2.97
2 5 city miles per gallon 4 0 20.50 0.58 20.5 0.74
3 6 city miles per gallon 79 0 16.22 1.77 16.0 1.48
4 8 city miles per gallon 70 0 12.57 1.81 13.0 2.22
5 Overall city miles per gallon 234 0 16.86 4.26 17.0 4.45
25th P 75th P IQR Min Max
1 19 22 3 15 35
2 20 21 1 20 21
3 15 18 3 11 19
4 11 14 3 9 16
5 14 19 5 9 35
data_summary_table(ctyByCylSummaryExample)
number of cylinders Label N P NA Mean S Dev Med MAD
1 4 city miles per gallon 81 0 21.01 3.50 21.0 2.97
2 5 city miles per gallon 4 0 20.50 0.58 20.5 0.74
3 6 city miles per gallon 79 0 16.22 1.77 16.0 1.48
4 8 city miles per gallon 70 0 12.57 1.81 13.0 2.22
5 Overall city miles per gallon 234 0 16.86 4.26 17.0 4.45
25th P 75th P IQR Min Max
1 19 22 3 15 35
2 20 21 1 20 21
3 15 18 3 11 19
4 11 14 3 9 16
5 14 19 5 9 35
data_summary_plot(ctyByCylSummaryExample)
make_kable_output(ctyByCylSummaryExample)
number of cylinders | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | city miles per gallon | 81 | 0 | 21.01 | 3.50 | 21.0 | 2.97 | 19 | 22 | 3 | 15 | 35 |
5 | city miles per gallon | 4 | 0 | 20.50 | 0.58 | 20.5 | 0.74 | 20 | 21 | 1 | 20 | 21 |
6 | city miles per gallon | 79 | 0 | 16.22 | 1.77 | 16.0 | 1.48 | 15 | 18 | 3 | 11 | 19 |
8 | city miles per gallon | 70 | 0 | 12.57 | 1.81 | 13.0 | 2.22 | 11 | 14 | 3 | 9 | 16 |
Overall | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17.0 | 4.45 | 14 | 19 | 5 | 9 | 35 |
make_complete_output(ctyByCylSummaryExample)
number of cylinders | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | city miles per gallon | 81 | 0 | 21.01 | 3.50 | 21.0 | 2.97 | 19 | 22 | 3 | 15 | 35 |
5 | city miles per gallon | 4 | 0 | 20.50 | 0.58 | 20.5 | 0.74 | 20 | 21 | 1 | 20 | 21 |
6 | city miles per gallon | 79 | 0 | 16.22 | 1.77 | 16.0 | 1.48 | 15 | 18 | 3 | 11 | 19 |
8 | city miles per gallon | 70 | 0 | 12.57 | 1.81 | 13.0 | 2.22 | 11 | 14 | 3 | 9 | 16 |
Overall | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17.0 | 4.45 | 14 | 19 | 5 | 9 | 35 |
show(ctyByCylByYearSummaryExample)
number of cylinders by year of manufacture Label N P NA
1 4, 1999 city miles per gallon 45 0
2 6, 1999 city miles per gallon 45 0
3 8, 1999 city miles per gallon 27 0
4 4, 2008 city miles per gallon 36 0
5 5, 2008 city miles per gallon 4 0
6 6, 2008 city miles per gallon 34 0
7 8, 2008 city miles per gallon 43 0
8 Overall city miles per gallon 234 0
Mean S Dev Med MAD 25th P 75th P IQR Min Max
1 20.84 4.24 19.0 2.97 18 21 3.0 15 35
2 16.07 1.67 16.0 2.97 15 18 3.0 13 19
3 12.22 1.65 11.0 0.00 11 13 2.0 11 16
4 21.22 2.29 21.0 1.48 20 22 2.0 17 28
5 20.50 0.58 20.5 0.74 20 21 1.0 20 21
6 16.41 1.91 17.0 1.48 15 18 2.5 11 19
7 12.79 1.88 13.0 1.48 12 14 2.0 9 16
8 16.86 4.26 17.0 4.45 14 19 5.0 9 35
data_summary_table(ctyByCylByYearSummaryExample)
number of cylinders by year of manufacture Label N P NA
1 4, 1999 city miles per gallon 45 0
2 6, 1999 city miles per gallon 45 0
3 8, 1999 city miles per gallon 27 0
4 4, 2008 city miles per gallon 36 0
5 5, 2008 city miles per gallon 4 0
6 6, 2008 city miles per gallon 34 0
7 8, 2008 city miles per gallon 43 0
8 Overall city miles per gallon 234 0
Mean S Dev Med MAD 25th P 75th P IQR Min Max
1 20.84 4.24 19.0 2.97 18 21 3.0 15 35
2 16.07 1.67 16.0 2.97 15 18 3.0 13 19
3 12.22 1.65 11.0 0.00 11 13 2.0 11 16
4 21.22 2.29 21.0 1.48 20 22 2.0 17 28
5 20.50 0.58 20.5 0.74 20 21 1.0 20 21
6 16.41 1.91 17.0 1.48 15 18 2.5 11 19
7 12.79 1.88 13.0 1.48 12 14 2.0 9 16
8 16.86 4.26 17.0 4.45 14 19 5.0 9 35
data_summary_plot(ctyByCylByYearSummaryExample)
make_kable_output(ctyByCylByYearSummaryExample)
number of cylinders by year of manufacture | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4, 1999 | city miles per gallon | 45 | 0 | 20.84 | 4.24 | 19.0 | 2.97 | 18 | 21 | 3.0 | 15 | 35 |
6, 1999 | city miles per gallon | 45 | 0 | 16.07 | 1.67 | 16.0 | 2.97 | 15 | 18 | 3.0 | 13 | 19 |
8, 1999 | city miles per gallon | 27 | 0 | 12.22 | 1.65 | 11.0 | 0.00 | 11 | 13 | 2.0 | 11 | 16 |
4, 2008 | city miles per gallon | 36 | 0 | 21.22 | 2.29 | 21.0 | 1.48 | 20 | 22 | 2.0 | 17 | 28 |
5, 2008 | city miles per gallon | 4 | 0 | 20.50 | 0.58 | 20.5 | 0.74 | 20 | 21 | 1.0 | 20 | 21 |
6, 2008 | city miles per gallon | 34 | 0 | 16.41 | 1.91 | 17.0 | 1.48 | 15 | 18 | 2.5 | 11 | 19 |
8, 2008 | city miles per gallon | 43 | 0 | 12.79 | 1.88 | 13.0 | 1.48 | 12 | 14 | 2.0 | 9 | 16 |
Overall | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17.0 | 4.45 | 14 | 19 | 5.0 | 9 | 35 |
make_complete_output(ctyByCylByYearSummaryExample)
number of cylinders by year of manufacture | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4, 1999 | city miles per gallon | 45 | 0 | 20.84 | 4.24 | 19.0 | 2.97 | 18 | 21 | 3.0 | 15 | 35 |
6, 1999 | city miles per gallon | 45 | 0 | 16.07 | 1.67 | 16.0 | 2.97 | 15 | 18 | 3.0 | 13 | 19 |
8, 1999 | city miles per gallon | 27 | 0 | 12.22 | 1.65 | 11.0 | 0.00 | 11 | 13 | 2.0 | 11 | 16 |
4, 2008 | city miles per gallon | 36 | 0 | 21.22 | 2.29 | 21.0 | 1.48 | 20 | 22 | 2.0 | 17 | 28 |
5, 2008 | city miles per gallon | 4 | 0 | 20.50 | 0.58 | 20.5 | 0.74 | 20 | 21 | 1.0 | 20 | 21 |
6, 2008 | city miles per gallon | 34 | 0 | 16.41 | 1.91 | 17.0 | 1.48 | 15 | 18 | 2.5 | 11 | 19 |
8, 2008 | city miles per gallon | 43 | 0 | 12.79 | 1.88 | 13.0 | 1.48 | 12 | 14 | 2.0 | 9 | 16 |
Overall | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17.0 | 4.45 | 14 | 19 | 5.0 | 9 | 35 |
show(dpSummaryExample)
Label N P NA Mean S Dev Med
1 date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24
MAD 25th P 75th P IQR Min Max
1 74.98 weeks 1999-07-14 2008-09-01 476.7143 weeks 1999-01-04 2008-12-23
data_summary_table(dpSummaryExample)
Label N P NA Mean S Dev Med
1 date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24
MAD 25th P 75th P IQR Min Max
1 74.98 weeks 1999-07-14 2008-09-01 476.7143 weeks 1999-01-04 2008-12-23
data_summary_plot(dpSummaryExample)
make_kable_output(dpSummaryExample)
Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
date of purchase (Date class) | 213 | 8.58 | 2003-12-21 | 236.59 weeks | 1999-12-24 | 74.98 weeks | 1999-07-14 | 2008-09-01 | 476.7143 weeks | 1999-01-04 | 2008-12-23 |
make_complete_output(dpSummaryExample)
Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
date of purchase (Date class) | 213 | 8.58 | 2003-12-21 | 236.59 weeks | 1999-12-24 | 74.98 weeks | 1999-07-14 | 2008-09-01 | 476.7143 weeks | 1999-01-04 | 2008-12-23 |
show(dpByCylSummaryExample)
number of cylinders Label N P NA Mean
1 4 date of purchase (Date class) 73 8.75 2003-03-03
2 5 date of purchase (Date class) 3 25.00 2008-09-25
3 6 date of purchase (Date class) 71 10.13 2003-06-14
4 8 date of purchase (Date class) 66 5.71 2005-03-13
5 Overall date of purchase (Date class) 213 8.58 2003-12-21
S Dev Med MAD 25th P 75th P IQR
1 234.04 weeks 1999-10-11 49.35 weeks 1999-06-03 2008-07-28 477.57143 weeks
2 16.08 weeks 2008-11-13 6.78 weeks 2008-05-20 2008-12-15 29.85714 weeks
3 235.29 weeks 1999-11-02 50.20 weeks 1999-07-14 2008-08-02 472.42857 weeks
4 229.06 weeks 2008-02-10 52.42 weeks 1999-10-04 2008-09-08 466.00000 weeks
5 236.59 weeks 1999-12-24 74.98 weeks 1999-07-14 2008-09-01 476.71429 weeks
Min Max
1 1999-01-14 2008-12-23
2 2008-05-20 2008-12-15
3 1999-01-05 2008-12-09
4 1999-01-04 2008-12-14
5 1999-01-04 2008-12-23
data_summary_table(dpByCylSummaryExample)
number of cylinders Label N P NA Mean
1 4 date of purchase (Date class) 73 8.75 2003-03-03
2 5 date of purchase (Date class) 3 25.00 2008-09-25
3 6 date of purchase (Date class) 71 10.13 2003-06-14
4 8 date of purchase (Date class) 66 5.71 2005-03-13
5 Overall date of purchase (Date class) 213 8.58 2003-12-21
S Dev Med MAD 25th P 75th P IQR
1 234.04 weeks 1999-10-11 49.35 weeks 1999-06-03 2008-07-28 477.57143 weeks
2 16.08 weeks 2008-11-13 6.78 weeks 2008-05-20 2008-12-15 29.85714 weeks
3 235.29 weeks 1999-11-02 50.20 weeks 1999-07-14 2008-08-02 472.42857 weeks
4 229.06 weeks 2008-02-10 52.42 weeks 1999-10-04 2008-09-08 466.00000 weeks
5 236.59 weeks 1999-12-24 74.98 weeks 1999-07-14 2008-09-01 476.71429 weeks
Min Max
1 1999-01-14 2008-12-23
2 2008-05-20 2008-12-15
3 1999-01-05 2008-12-09
4 1999-01-04 2008-12-14
5 1999-01-04 2008-12-23
data_summary_plot(dpByCylSummaryExample)
make_kable_output(dpByCylSummaryExample)
number of cylinders | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | date of purchase (Date class) | 73 | 8.75 | 2003-03-03 | 234.04 weeks | 1999-10-11 | 49.35 weeks | 1999-06-03 | 2008-07-28 | 477.57143 weeks | 1999-01-14 | 2008-12-23 |
5 | date of purchase (Date class) | 3 | 25.00 | 2008-09-25 | 16.08 weeks | 2008-11-13 | 6.78 weeks | 2008-05-20 | 2008-12-15 | 29.85714 weeks | 2008-05-20 | 2008-12-15 |
6 | date of purchase (Date class) | 71 | 10.13 | 2003-06-14 | 235.29 weeks | 1999-11-02 | 50.20 weeks | 1999-07-14 | 2008-08-02 | 472.42857 weeks | 1999-01-05 | 2008-12-09 |
8 | date of purchase (Date class) | 66 | 5.71 | 2005-03-13 | 229.06 weeks | 2008-02-10 | 52.42 weeks | 1999-10-04 | 2008-09-08 | 466.00000 weeks | 1999-01-04 | 2008-12-14 |
Overall | date of purchase (Date class) | 213 | 8.58 | 2003-12-21 | 236.59 weeks | 1999-12-24 | 74.98 weeks | 1999-07-14 | 2008-09-01 | 476.71429 weeks | 1999-01-04 | 2008-12-23 |
make_complete_output(dpByCylSummaryExample)
number of cylinders | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | date of purchase (Date class) | 73 | 8.75 | 2003-03-03 | 234.04 weeks | 1999-10-11 | 49.35 weeks | 1999-06-03 | 2008-07-28 | 477.57143 weeks | 1999-01-14 | 2008-12-23 |
5 | date of purchase (Date class) | 3 | 25.00 | 2008-09-25 | 16.08 weeks | 2008-11-13 | 6.78 weeks | 2008-05-20 | 2008-12-15 | 29.85714 weeks | 2008-05-20 | 2008-12-15 |
6 | date of purchase (Date class) | 71 | 10.13 | 2003-06-14 | 235.29 weeks | 1999-11-02 | 50.20 weeks | 1999-07-14 | 2008-08-02 | 472.42857 weeks | 1999-01-05 | 2008-12-09 |
8 | date of purchase (Date class) | 66 | 5.71 | 2005-03-13 | 229.06 weeks | 2008-02-10 | 52.42 weeks | 1999-10-04 | 2008-09-08 | 466.00000 weeks | 1999-01-04 | 2008-12-14 |
Overall | date of purchase (Date class) | 213 | 8.58 | 2003-12-21 | 236.59 weeks | 1999-12-24 | 74.98 weeks | 1999-07-14 | 2008-09-01 | 476.71429 weeks | 1999-01-04 | 2008-12-23 |
show(dpByCylByCommentsSummaryExample)
number of cylinders by some random comments
1 4, .
2 6, .
3 8, .
4 4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
5 6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
6 8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
7 4, Does it also fly?
8 6, Does it also fly?
9 8, Does it also fly?
10 4, Does it come in green?
11 6, Does it come in green?
12 8, Does it come in green?
13 4, I like this car!
14 6, I like this car!
15 8, I like this car!
16 4, Meh.
17 6, Meh.
18 8, Meh.
19 4, Missing
20 6, Missing
21 8, Missing
22 4, This is the worst car ever!
23 6, This is the worst car ever!
24 8, This is the worst car ever!
25 4, want cheese flavoured cars.
26 6, want cheese flavoured cars.
27 8, want cheese flavoured cars.
28 Overall
29 R NA Value
Label N P NA Mean S Dev Med
1 date of purchase (Date class) 5 0.00 2003-01-27 252.39 weeks 1999-10-26
2 date of purchase (Date class) 9 0.00 2004-08-21 241.15 weeks 2008-04-02
3 date of purchase (Date class) 10 9.09 2004-11-28 246.03 weeks 2008-02-07
4 date of purchase (Date class) 9 0.00 2002-08-10 241.71 weeks 1999-09-12
5 date of purchase (Date class) 7 12.50 2004-08-16 254.96 weeks 2008-05-13
6 date of purchase (Date class) 4 0.00 2004-01-07 274.68 weeks 2004-02-23
7 date of purchase (Date class) 5 0.00 2002-12-14 265.47 weeks 1999-08-06
8 date of purchase (Date class) 4 42.86 2001-09-28 225.84 weeks 1999-08-23
9 date of purchase (Date class) 4 0.00 2004-03-25 272.68 weeks 2004-04-06
10 date of purchase (Date class) 15 0.00 2003-07-23 243.88 weeks 1999-08-26
11 date of purchase (Date class) 3 0.00 2002-06-23 268.42 weeks 1999-09-09
12 date of purchase (Date class) 5 0.00 2006-07-09 217.62 weeks 2008-02-09
13 date of purchase (Date class) 8 11.11 2005-04-06 247.72 weeks 2008-07-29
14 date of purchase (Date class) 7 22.22 2002-01-30 232.78 weeks 1999-08-23
15 date of purchase (Date class) 4 0.00 2001-11-20 246.39 weeks 1999-09-27
16 date of purchase (Date class) 6 0.00 1999-05-01 9.86 weeks 1999-04-25
17 date of purchase (Date class) 6 0.00 2005-06-05 248.14 weeks 2008-04-27
18 date of purchase (Date class) 5 16.67 2008-04-14 9.80 weeks 2008-04-15
19 date of purchase (Date class) 3 50.00 2002-08-26 280.92 weeks 1999-10-09
20 date of purchase (Date class) 5 0.00 2004-12-23 255.73 weeks 2008-05-24
21 date of purchase (Date class) 14 0.00 2005-11-13 226.66 weeks 2008-04-02
22 date of purchase (Date class) 7 0.00 2003-05-28 247.48 weeks 1999-11-24
23 date of purchase (Date class) 9 10.00 2002-08-03 237.70 weeks 1999-10-18
24 date of purchase (Date class) 5 0.00 2006-09-25 213.60 weeks 2008-07-04
25 date of purchase (Date class) 10 9.09 2003-02-13 238.91 weeks 1999-12-10
26 date of purchase (Date class) 13 0.00 2002-04-09 231.98 weeks 1999-08-31
27 date of purchase (Date class) 8 11.11 2005-01-02 240.53 weeks 2008-02-06
28 date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24
29 date of purchase (Date class) 20 16.67 2003-12-06 236.95 weeks 2003-12-24
MAD 25th P 75th P IQR Min Max
1 54.64 weeks 1999-02-10 2008-02-08 469.285714 weeks 1999-02-10 2008-08-12
2 44.27 weeks 1999-08-28 2008-06-18 459.571429 weeks 1999-07-14 2008-10-28
3 61.53 weeks 1999-10-05 2008-09-06 465.571429 weeks 1999-01-13 2008-11-27
4 38.34 weeks 1999-03-15 2008-05-25 479.857143 weeks 1999-03-08 2008-12-23
5 31.13 weeks 1999-06-07 2008-08-02 477.714286 weeks 1999-03-19 2008-10-07
6 342.16 weeks 1999-02-03 2008-06-12 488.142857 weeks 1999-02-03 2008-09-09
7 43.21 weeks 1999-01-14 2008-02-14 474.000000 weeks 1999-01-14 2008-11-26
8 12.71 weeks 1999-07-03 <NA> NA weeks 1999-06-15 2008-03-25
9 347.46 weeks 1999-07-16 2008-08-25 475.428571 weeks 1999-07-16 2008-11-10
10 47.02 weeks 1999-03-24 2008-02-26 465.857143 weeks 1999-01-16 2008-10-13
11 27.75 weeks 1999-05-01 1999-09-09 18.714286 weeks 1999-05-01 2008-05-31
12 24.15 weeks 1999-02-01 2008-06-02 487.000000 weeks 1999-02-01 2008-12-08
13 20.33 weeks 1999-06-23 2008-09-23 482.857143 weeks 1999-06-08 2008-12-12
14 25.84 weeks 1999-04-23 2008-09-05 489.000000 weeks 1999-03-13 2008-09-05
15 30.61 weeks 1999-02-12 1999-11-28 41.285714 weeks 1999-02-12 2008-12-14
16 8.47 weeks 1999-03-26 1999-05-16 7.285714 weeks 1999-01-25 1999-08-11
17 26.58 weeks 1999-07-31 2008-05-08 457.714286 weeks 1999-01-05 2008-09-26
18 11.44 weeks 2008-02-21 2008-05-27 13.714286 weeks 2008-01-27 2008-07-13
19 34.74 weeks 1999-10-09 <NA> NA weeks 1999-04-28 2008-11-11
20 21.18 weeks 1999-07-30 2008-08-09 471.142857 weeks 1999-07-30 2008-09-01
21 38.55 weeks 1999-10-04 2008-09-08 466.000000 weeks 1999-01-04 2008-11-15
22 50.62 weeks 1999-06-03 2008-02-10 453.428571 weeks 1999-03-30 2008-09-29
23 38.34 weeks 1999-04-20 2008-09-13 490.571429 weeks 1999-03-22 2008-10-26
24 16.10 weeks 1999-06-02 2008-09-18 485.142857 weeks 1999-06-02 2008-09-19
25 57.50 weeks 1999-06-09 2008-05-15 466.142857 weeks 1999-02-17 2008-10-31
26 36.85 weeks 1999-03-10 2008-06-24 484.857143 weeks 1999-01-26 2008-12-09
27 44.16 weeks 1999-05-21 2008-07-18 478.000000 weeks 1999-04-01 2008-10-18
28 74.98 weeks 1999-07-14 2008-09-01 476.714286 weeks 1999-01-04 2008-12-23
29 337.72 weeks 1999-08-14 2008-06-25 462.571429 weeks 1999-01-07 2008-12-03
data_summary_table(dpByCylByCommentsSummaryExample)
number of cylinders by some random comments
1 4, .
2 6, .
3 8, .
4 4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
5 6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
6 8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
7 4, Does it also fly?
8 6, Does it also fly?
9 8, Does it also fly?
10 4, Does it come in green?
11 6, Does it come in green?
12 8, Does it come in green?
13 4, I like this car!
14 6, I like this car!
15 8, I like this car!
16 4, Meh.
17 6, Meh.
18 8, Meh.
19 4, Missing
20 6, Missing
21 8, Missing
22 4, This is the worst car ever!
23 6, This is the worst car ever!
24 8, This is the worst car ever!
25 4, want cheese flavoured cars.
26 6, want cheese flavoured cars.
27 8, want cheese flavoured cars.
28 Overall
29 R NA Value
Label N P NA Mean S Dev Med
1 date of purchase (Date class) 5 0.00 2003-01-27 252.39 weeks 1999-10-26
2 date of purchase (Date class) 9 0.00 2004-08-21 241.15 weeks 2008-04-02
3 date of purchase (Date class) 10 9.09 2004-11-28 246.03 weeks 2008-02-07
4 date of purchase (Date class) 9 0.00 2002-08-10 241.71 weeks 1999-09-12
5 date of purchase (Date class) 7 12.50 2004-08-16 254.96 weeks 2008-05-13
6 date of purchase (Date class) 4 0.00 2004-01-07 274.68 weeks 2004-02-23
7 date of purchase (Date class) 5 0.00 2002-12-14 265.47 weeks 1999-08-06
8 date of purchase (Date class) 4 42.86 2001-09-28 225.84 weeks 1999-08-23
9 date of purchase (Date class) 4 0.00 2004-03-25 272.68 weeks 2004-04-06
10 date of purchase (Date class) 15 0.00 2003-07-23 243.88 weeks 1999-08-26
11 date of purchase (Date class) 3 0.00 2002-06-23 268.42 weeks 1999-09-09
12 date of purchase (Date class) 5 0.00 2006-07-09 217.62 weeks 2008-02-09
13 date of purchase (Date class) 8 11.11 2005-04-06 247.72 weeks 2008-07-29
14 date of purchase (Date class) 7 22.22 2002-01-30 232.78 weeks 1999-08-23
15 date of purchase (Date class) 4 0.00 2001-11-20 246.39 weeks 1999-09-27
16 date of purchase (Date class) 6 0.00 1999-05-01 9.86 weeks 1999-04-25
17 date of purchase (Date class) 6 0.00 2005-06-05 248.14 weeks 2008-04-27
18 date of purchase (Date class) 5 16.67 2008-04-14 9.80 weeks 2008-04-15
19 date of purchase (Date class) 3 50.00 2002-08-26 280.92 weeks 1999-10-09
20 date of purchase (Date class) 5 0.00 2004-12-23 255.73 weeks 2008-05-24
21 date of purchase (Date class) 14 0.00 2005-11-13 226.66 weeks 2008-04-02
22 date of purchase (Date class) 7 0.00 2003-05-28 247.48 weeks 1999-11-24
23 date of purchase (Date class) 9 10.00 2002-08-03 237.70 weeks 1999-10-18
24 date of purchase (Date class) 5 0.00 2006-09-25 213.60 weeks 2008-07-04
25 date of purchase (Date class) 10 9.09 2003-02-13 238.91 weeks 1999-12-10
26 date of purchase (Date class) 13 0.00 2002-04-09 231.98 weeks 1999-08-31
27 date of purchase (Date class) 8 11.11 2005-01-02 240.53 weeks 2008-02-06
28 date of purchase (Date class) 213 8.58 2003-12-21 236.59 weeks 1999-12-24
29 date of purchase (Date class) 20 16.67 2003-12-06 236.95 weeks 2003-12-24
MAD 25th P 75th P IQR Min Max
1 54.64 weeks 1999-02-10 2008-02-08 469.285714 weeks 1999-02-10 2008-08-12
2 44.27 weeks 1999-08-28 2008-06-18 459.571429 weeks 1999-07-14 2008-10-28
3 61.53 weeks 1999-10-05 2008-09-06 465.571429 weeks 1999-01-13 2008-11-27
4 38.34 weeks 1999-03-15 2008-05-25 479.857143 weeks 1999-03-08 2008-12-23
5 31.13 weeks 1999-06-07 2008-08-02 477.714286 weeks 1999-03-19 2008-10-07
6 342.16 weeks 1999-02-03 2008-06-12 488.142857 weeks 1999-02-03 2008-09-09
7 43.21 weeks 1999-01-14 2008-02-14 474.000000 weeks 1999-01-14 2008-11-26
8 12.71 weeks 1999-07-03 <NA> NA weeks 1999-06-15 2008-03-25
9 347.46 weeks 1999-07-16 2008-08-25 475.428571 weeks 1999-07-16 2008-11-10
10 47.02 weeks 1999-03-24 2008-02-26 465.857143 weeks 1999-01-16 2008-10-13
11 27.75 weeks 1999-05-01 1999-09-09 18.714286 weeks 1999-05-01 2008-05-31
12 24.15 weeks 1999-02-01 2008-06-02 487.000000 weeks 1999-02-01 2008-12-08
13 20.33 weeks 1999-06-23 2008-09-23 482.857143 weeks 1999-06-08 2008-12-12
14 25.84 weeks 1999-04-23 2008-09-05 489.000000 weeks 1999-03-13 2008-09-05
15 30.61 weeks 1999-02-12 1999-11-28 41.285714 weeks 1999-02-12 2008-12-14
16 8.47 weeks 1999-03-26 1999-05-16 7.285714 weeks 1999-01-25 1999-08-11
17 26.58 weeks 1999-07-31 2008-05-08 457.714286 weeks 1999-01-05 2008-09-26
18 11.44 weeks 2008-02-21 2008-05-27 13.714286 weeks 2008-01-27 2008-07-13
19 34.74 weeks 1999-10-09 <NA> NA weeks 1999-04-28 2008-11-11
20 21.18 weeks 1999-07-30 2008-08-09 471.142857 weeks 1999-07-30 2008-09-01
21 38.55 weeks 1999-10-04 2008-09-08 466.000000 weeks 1999-01-04 2008-11-15
22 50.62 weeks 1999-06-03 2008-02-10 453.428571 weeks 1999-03-30 2008-09-29
23 38.34 weeks 1999-04-20 2008-09-13 490.571429 weeks 1999-03-22 2008-10-26
24 16.10 weeks 1999-06-02 2008-09-18 485.142857 weeks 1999-06-02 2008-09-19
25 57.50 weeks 1999-06-09 2008-05-15 466.142857 weeks 1999-02-17 2008-10-31
26 36.85 weeks 1999-03-10 2008-06-24 484.857143 weeks 1999-01-26 2008-12-09
27 44.16 weeks 1999-05-21 2008-07-18 478.000000 weeks 1999-04-01 2008-10-18
28 74.98 weeks 1999-07-14 2008-09-01 476.714286 weeks 1999-01-04 2008-12-23
29 337.72 weeks 1999-08-14 2008-06-25 462.571429 weeks 1999-01-07 2008-12-03
data_summary_plot(dpByCylByCommentsSummaryExample)
make_kable_output(dpByCylByCommentsSummaryExample)
number of cylinders by some random comments | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4, . | date of purchase (Date class) | 5 | 0.00 | 2003-01-27 | 252.39 weeks | 1999-10-26 | 54.64 weeks | 1999-02-10 | 2008-02-08 | 469.285714 weeks | 1999-02-10 | 2008-08-12 |
6, . | date of purchase (Date class) | 9 | 0.00 | 2004-08-21 | 241.15 weeks | 2008-04-02 | 44.27 weeks | 1999-08-28 | 2008-06-18 | 459.571429 weeks | 1999-07-14 | 2008-10-28 |
8, . | date of purchase (Date class) | 10 | 9.09 | 2004-11-28 | 246.03 weeks | 2008-02-07 | 61.53 weeks | 1999-10-05 | 2008-09-06 | 465.571429 weeks | 1999-01-13 | 2008-11-27 |
4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (Date class) | 9 | 0.00 | 2002-08-10 | 241.71 weeks | 1999-09-12 | 38.34 weeks | 1999-03-15 | 2008-05-25 | 479.857143 weeks | 1999-03-08 | 2008-12-23 |
6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (Date class) | 7 | 12.50 | 2004-08-16 | 254.96 weeks | 2008-05-13 | 31.13 weeks | 1999-06-07 | 2008-08-02 | 477.714286 weeks | 1999-03-19 | 2008-10-07 |
8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (Date class) | 4 | 0.00 | 2004-01-07 | 274.68 weeks | 2004-02-23 | 342.16 weeks | 1999-02-03 | 2008-06-12 | 488.142857 weeks | 1999-02-03 | 2008-09-09 |
4, Does it also fly? | date of purchase (Date class) | 5 | 0.00 | 2002-12-14 | 265.47 weeks | 1999-08-06 | 43.21 weeks | 1999-01-14 | 2008-02-14 | 474.000000 weeks | 1999-01-14 | 2008-11-26 |
6, Does it also fly? | date of purchase (Date class) | 4 | 42.86 | 2001-09-28 | 225.84 weeks | 1999-08-23 | 12.71 weeks | 1999-07-03 | NA | NA weeks | 1999-06-15 | 2008-03-25 |
8, Does it also fly? | date of purchase (Date class) | 4 | 0.00 | 2004-03-25 | 272.68 weeks | 2004-04-06 | 347.46 weeks | 1999-07-16 | 2008-08-25 | 475.428571 weeks | 1999-07-16 | 2008-11-10 |
4, Does it come in green? | date of purchase (Date class) | 15 | 0.00 | 2003-07-23 | 243.88 weeks | 1999-08-26 | 47.02 weeks | 1999-03-24 | 2008-02-26 | 465.857143 weeks | 1999-01-16 | 2008-10-13 |
6, Does it come in green? | date of purchase (Date class) | 3 | 0.00 | 2002-06-23 | 268.42 weeks | 1999-09-09 | 27.75 weeks | 1999-05-01 | 1999-09-09 | 18.714286 weeks | 1999-05-01 | 2008-05-31 |
8, Does it come in green? | date of purchase (Date class) | 5 | 0.00 | 2006-07-09 | 217.62 weeks | 2008-02-09 | 24.15 weeks | 1999-02-01 | 2008-06-02 | 487.000000 weeks | 1999-02-01 | 2008-12-08 |
4, I like this car! | date of purchase (Date class) | 8 | 11.11 | 2005-04-06 | 247.72 weeks | 2008-07-29 | 20.33 weeks | 1999-06-23 | 2008-09-23 | 482.857143 weeks | 1999-06-08 | 2008-12-12 |
6, I like this car! | date of purchase (Date class) | 7 | 22.22 | 2002-01-30 | 232.78 weeks | 1999-08-23 | 25.84 weeks | 1999-04-23 | 2008-09-05 | 489.000000 weeks | 1999-03-13 | 2008-09-05 |
8, I like this car! | date of purchase (Date class) | 4 | 0.00 | 2001-11-20 | 246.39 weeks | 1999-09-27 | 30.61 weeks | 1999-02-12 | 1999-11-28 | 41.285714 weeks | 1999-02-12 | 2008-12-14 |
4, Meh. | date of purchase (Date class) | 6 | 0.00 | 1999-05-01 | 9.86 weeks | 1999-04-25 | 8.47 weeks | 1999-03-26 | 1999-05-16 | 7.285714 weeks | 1999-01-25 | 1999-08-11 |
6, Meh. | date of purchase (Date class) | 6 | 0.00 | 2005-06-05 | 248.14 weeks | 2008-04-27 | 26.58 weeks | 1999-07-31 | 2008-05-08 | 457.714286 weeks | 1999-01-05 | 2008-09-26 |
8, Meh. | date of purchase (Date class) | 5 | 16.67 | 2008-04-14 | 9.80 weeks | 2008-04-15 | 11.44 weeks | 2008-02-21 | 2008-05-27 | 13.714286 weeks | 2008-01-27 | 2008-07-13 |
4, Missing | date of purchase (Date class) | 3 | 50.00 | 2002-08-26 | 280.92 weeks | 1999-10-09 | 34.74 weeks | 1999-10-09 | NA | NA weeks | 1999-04-28 | 2008-11-11 |
6, Missing | date of purchase (Date class) | 5 | 0.00 | 2004-12-23 | 255.73 weeks | 2008-05-24 | 21.18 weeks | 1999-07-30 | 2008-08-09 | 471.142857 weeks | 1999-07-30 | 2008-09-01 |
8, Missing | date of purchase (Date class) | 14 | 0.00 | 2005-11-13 | 226.66 weeks | 2008-04-02 | 38.55 weeks | 1999-10-04 | 2008-09-08 | 466.000000 weeks | 1999-01-04 | 2008-11-15 |
4, This is the worst car ever! | date of purchase (Date class) | 7 | 0.00 | 2003-05-28 | 247.48 weeks | 1999-11-24 | 50.62 weeks | 1999-06-03 | 2008-02-10 | 453.428571 weeks | 1999-03-30 | 2008-09-29 |
6, This is the worst car ever! | date of purchase (Date class) | 9 | 10.00 | 2002-08-03 | 237.70 weeks | 1999-10-18 | 38.34 weeks | 1999-04-20 | 2008-09-13 | 490.571429 weeks | 1999-03-22 | 2008-10-26 |
8, This is the worst car ever! | date of purchase (Date class) | 5 | 0.00 | 2006-09-25 | 213.60 weeks | 2008-07-04 | 16.10 weeks | 1999-06-02 | 2008-09-18 | 485.142857 weeks | 1999-06-02 | 2008-09-19 |
4, want cheese flavoured cars. | date of purchase (Date class) | 10 | 9.09 | 2003-02-13 | 238.91 weeks | 1999-12-10 | 57.50 weeks | 1999-06-09 | 2008-05-15 | 466.142857 weeks | 1999-02-17 | 2008-10-31 |
6, want cheese flavoured cars. | date of purchase (Date class) | 13 | 0.00 | 2002-04-09 | 231.98 weeks | 1999-08-31 | 36.85 weeks | 1999-03-10 | 2008-06-24 | 484.857143 weeks | 1999-01-26 | 2008-12-09 |
8, want cheese flavoured cars. | date of purchase (Date class) | 8 | 11.11 | 2005-01-02 | 240.53 weeks | 2008-02-06 | 44.16 weeks | 1999-05-21 | 2008-07-18 | 478.000000 weeks | 1999-04-01 | 2008-10-18 |
Overall | date of purchase (Date class) | 213 | 8.58 | 2003-12-21 | 236.59 weeks | 1999-12-24 | 74.98 weeks | 1999-07-14 | 2008-09-01 | 476.714286 weeks | 1999-01-04 | 2008-12-23 |
R NA Value | date of purchase (Date class) | 20 | 16.67 | 2003-12-06 | 236.95 weeks | 2003-12-24 | 337.72 weeks | 1999-08-14 | 2008-06-25 | 462.571429 weeks | 1999-01-07 | 2008-12-03 |
make_complete_output(dpByCylByCommentsSummaryExample)
number of cylinders by some random comments | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4, . | date of purchase (Date class) | 5 | 0.00 | 2003-01-27 | 252.39 weeks | 1999-10-26 | 54.64 weeks | 1999-02-10 | 2008-02-08 | 469.285714 weeks | 1999-02-10 | 2008-08-12 |
6, . | date of purchase (Date class) | 9 | 0.00 | 2004-08-21 | 241.15 weeks | 2008-04-02 | 44.27 weeks | 1999-08-28 | 2008-06-18 | 459.571429 weeks | 1999-07-14 | 2008-10-28 |
8, . | date of purchase (Date class) | 10 | 9.09 | 2004-11-28 | 246.03 weeks | 2008-02-07 | 61.53 weeks | 1999-10-05 | 2008-09-06 | 465.571429 weeks | 1999-01-13 | 2008-11-27 |
4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (Date class) | 9 | 0.00 | 2002-08-10 | 241.71 weeks | 1999-09-12 | 38.34 weeks | 1999-03-15 | 2008-05-25 | 479.857143 weeks | 1999-03-08 | 2008-12-23 |
6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (Date class) | 7 | 12.50 | 2004-08-16 | 254.96 weeks | 2008-05-13 | 31.13 weeks | 1999-06-07 | 2008-08-02 | 477.714286 weeks | 1999-03-19 | 2008-10-07 |
8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (Date class) | 4 | 0.00 | 2004-01-07 | 274.68 weeks | 2004-02-23 | 342.16 weeks | 1999-02-03 | 2008-06-12 | 488.142857 weeks | 1999-02-03 | 2008-09-09 |
4, Does it also fly? | date of purchase (Date class) | 5 | 0.00 | 2002-12-14 | 265.47 weeks | 1999-08-06 | 43.21 weeks | 1999-01-14 | 2008-02-14 | 474.000000 weeks | 1999-01-14 | 2008-11-26 |
6, Does it also fly? | date of purchase (Date class) | 4 | 42.86 | 2001-09-28 | 225.84 weeks | 1999-08-23 | 12.71 weeks | 1999-07-03 | NA | NA weeks | 1999-06-15 | 2008-03-25 |
8, Does it also fly? | date of purchase (Date class) | 4 | 0.00 | 2004-03-25 | 272.68 weeks | 2004-04-06 | 347.46 weeks | 1999-07-16 | 2008-08-25 | 475.428571 weeks | 1999-07-16 | 2008-11-10 |
4, Does it come in green? | date of purchase (Date class) | 15 | 0.00 | 2003-07-23 | 243.88 weeks | 1999-08-26 | 47.02 weeks | 1999-03-24 | 2008-02-26 | 465.857143 weeks | 1999-01-16 | 2008-10-13 |
6, Does it come in green? | date of purchase (Date class) | 3 | 0.00 | 2002-06-23 | 268.42 weeks | 1999-09-09 | 27.75 weeks | 1999-05-01 | 1999-09-09 | 18.714286 weeks | 1999-05-01 | 2008-05-31 |
8, Does it come in green? | date of purchase (Date class) | 5 | 0.00 | 2006-07-09 | 217.62 weeks | 2008-02-09 | 24.15 weeks | 1999-02-01 | 2008-06-02 | 487.000000 weeks | 1999-02-01 | 2008-12-08 |
4, I like this car! | date of purchase (Date class) | 8 | 11.11 | 2005-04-06 | 247.72 weeks | 2008-07-29 | 20.33 weeks | 1999-06-23 | 2008-09-23 | 482.857143 weeks | 1999-06-08 | 2008-12-12 |
6, I like this car! | date of purchase (Date class) | 7 | 22.22 | 2002-01-30 | 232.78 weeks | 1999-08-23 | 25.84 weeks | 1999-04-23 | 2008-09-05 | 489.000000 weeks | 1999-03-13 | 2008-09-05 |
8, I like this car! | date of purchase (Date class) | 4 | 0.00 | 2001-11-20 | 246.39 weeks | 1999-09-27 | 30.61 weeks | 1999-02-12 | 1999-11-28 | 41.285714 weeks | 1999-02-12 | 2008-12-14 |
4, Meh. | date of purchase (Date class) | 6 | 0.00 | 1999-05-01 | 9.86 weeks | 1999-04-25 | 8.47 weeks | 1999-03-26 | 1999-05-16 | 7.285714 weeks | 1999-01-25 | 1999-08-11 |
6, Meh. | date of purchase (Date class) | 6 | 0.00 | 2005-06-05 | 248.14 weeks | 2008-04-27 | 26.58 weeks | 1999-07-31 | 2008-05-08 | 457.714286 weeks | 1999-01-05 | 2008-09-26 |
8, Meh. | date of purchase (Date class) | 5 | 16.67 | 2008-04-14 | 9.80 weeks | 2008-04-15 | 11.44 weeks | 2008-02-21 | 2008-05-27 | 13.714286 weeks | 2008-01-27 | 2008-07-13 |
4, Missing | date of purchase (Date class) | 3 | 50.00 | 2002-08-26 | 280.92 weeks | 1999-10-09 | 34.74 weeks | 1999-10-09 | NA | NA weeks | 1999-04-28 | 2008-11-11 |
6, Missing | date of purchase (Date class) | 5 | 0.00 | 2004-12-23 | 255.73 weeks | 2008-05-24 | 21.18 weeks | 1999-07-30 | 2008-08-09 | 471.142857 weeks | 1999-07-30 | 2008-09-01 |
8, Missing | date of purchase (Date class) | 14 | 0.00 | 2005-11-13 | 226.66 weeks | 2008-04-02 | 38.55 weeks | 1999-10-04 | 2008-09-08 | 466.000000 weeks | 1999-01-04 | 2008-11-15 |
4, This is the worst car ever! | date of purchase (Date class) | 7 | 0.00 | 2003-05-28 | 247.48 weeks | 1999-11-24 | 50.62 weeks | 1999-06-03 | 2008-02-10 | 453.428571 weeks | 1999-03-30 | 2008-09-29 |
6, This is the worst car ever! | date of purchase (Date class) | 9 | 10.00 | 2002-08-03 | 237.70 weeks | 1999-10-18 | 38.34 weeks | 1999-04-20 | 2008-09-13 | 490.571429 weeks | 1999-03-22 | 2008-10-26 |
8, This is the worst car ever! | date of purchase (Date class) | 5 | 0.00 | 2006-09-25 | 213.60 weeks | 2008-07-04 | 16.10 weeks | 1999-06-02 | 2008-09-18 | 485.142857 weeks | 1999-06-02 | 2008-09-19 |
4, want cheese flavoured cars. | date of purchase (Date class) | 10 | 9.09 | 2003-02-13 | 238.91 weeks | 1999-12-10 | 57.50 weeks | 1999-06-09 | 2008-05-15 | 466.142857 weeks | 1999-02-17 | 2008-10-31 |
6, want cheese flavoured cars. | date of purchase (Date class) | 13 | 0.00 | 2002-04-09 | 231.98 weeks | 1999-08-31 | 36.85 weeks | 1999-03-10 | 2008-06-24 | 484.857143 weeks | 1999-01-26 | 2008-12-09 |
8, want cheese flavoured cars. | date of purchase (Date class) | 8 | 11.11 | 2005-01-02 | 240.53 weeks | 2008-02-06 | 44.16 weeks | 1999-05-21 | 2008-07-18 | 478.000000 weeks | 1999-04-01 | 2008-10-18 |
Overall | date of purchase (Date class) | 213 | 8.58 | 2003-12-21 | 236.59 weeks | 1999-12-24 | 74.98 weeks | 1999-07-14 | 2008-09-01 | 476.714286 weeks | 1999-01-04 | 2008-12-23 |
R NA Value | date of purchase (Date class) | 20 | 16.67 | 2003-12-06 | 236.95 weeks | 2003-12-24 | 337.72 weeks | 1999-08-14 | 2008-06-25 | 462.571429 weeks | 1999-01-07 | 2008-12-03 |
show(dpltSummaryExample)
Label N P NA Mean S Dev
1 date of purchase (POSIXlt class) 234 8.55 2003-11-15 13:01:05 234.3 weeks
Med MAD 25th P 75th P
1 1999-12-16 04:23:30 67.67 weeks 1999-07-17 10:42:00 2008-07-23 16:02:51
IQR Min Max
1 470.6033 weeks 1999-01-04 04:59:00 2008-12-23 01:06:02
data_summary_table(dpltSummaryExample)
Label N P NA Mean S Dev
1 date of purchase (POSIXlt class) 234 8.55 2003-11-15 13:01:05 234.3 weeks
Med MAD 25th P 75th P
1 1999-12-16 04:23:30 67.67 weeks 1999-07-17 10:42:00 2008-07-23 16:02:51
IQR Min Max
1 470.6033 weeks 1999-01-04 04:59:00 2008-12-23 01:06:02
data_summary_plot(dpltSummaryExample)
make_kable_output(dpltSummaryExample)
Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
date of purchase (POSIXlt class) | 234 | 8.55 | 2003-11-15 13:01:05 | 234.3 weeks | 1999-12-16 04:23:30 | 67.67 weeks | 1999-07-17 10:42:00 | 2008-07-23 16:02:51 | 470.6033 weeks | 1999-01-04 04:59:00 | 2008-12-23 01:06:02 |
make_complete_output(dpltSummaryExample)
Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
date of purchase (POSIXlt class) | 234 | 8.55 | 2003-11-15 13:01:05 | 234.3 weeks | 1999-12-16 04:23:30 | 67.67 weeks | 1999-07-17 10:42:00 | 2008-07-23 16:02:51 | 470.6033 weeks | 1999-01-04 04:59:00 | 2008-12-23 01:06:02 |
show(dpltByCylSummaryExample)
number of cylinders Label N P NA
1 4 date of purchase (POSIXlt class) 81 8.64
2 5 date of purchase (POSIXlt class) 4 0.00
3 6 date of purchase (POSIXlt class) 79 7.59
4 8 date of purchase (POSIXlt class) 70 10.00
5 Overall date of purchase (POSIXlt class) 234 8.55
Mean S Dev Med MAD
1 2003-06-07 09:46:09 230.17 weeks 1999-11-21 23:21:30 44.34 weeks
2 2008-06-18 22:25:47 17.06 weeks 2008-06-19 02:08:01 21.71 weeks
3 2002-12-18 08:32:02 231.02 weeks 1999-09-23 08:05:00 38.02 weeks
4 2005-02-25 06:40:15 229.55 weeks 2008-02-28 14:28:40 52.72 weeks
5 2003-11-15 13:01:05 234.30 weeks 1999-12-16 04:23:30 67.67 weeks
25th P 75th P IQR Min
1 1999-08-17 07:59:00 2008-07-19 06:48:36 465.56444 weeks 1999-02-06 23:51:00
2 2008-02-24 08:01:04 2008-09-16 23:32:21 29.37215 weeks 2008-02-24 08:01:04
3 1999-06-01 05:12:00 2008-06-30 00:50:43 473.83122 weeks 1999-02-02 05:57:00
4 1999-08-03 00:23:00 2008-08-16 21:36:23 471.69776 weeks 1999-01-04 04:59:00
5 1999-07-17 10:42:00 2008-07-23 16:02:51 470.60326 weeks 1999-01-04 04:59:00
Max
1 2008-12-06 16:25:11
2 2008-10-12 04:26:02
3 2008-12-23 01:06:02
4 2008-12-15 06:26:36
5 2008-12-23 01:06:02
data_summary_table(dpltByCylSummaryExample)
number of cylinders Label N P NA
1 4 date of purchase (POSIXlt class) 81 8.64
2 5 date of purchase (POSIXlt class) 4 0.00
3 6 date of purchase (POSIXlt class) 79 7.59
4 8 date of purchase (POSIXlt class) 70 10.00
5 Overall date of purchase (POSIXlt class) 234 8.55
Mean S Dev Med MAD
1 2003-06-07 09:46:09 230.17 weeks 1999-11-21 23:21:30 44.34 weeks
2 2008-06-18 22:25:47 17.06 weeks 2008-06-19 02:08:01 21.71 weeks
3 2002-12-18 08:32:02 231.02 weeks 1999-09-23 08:05:00 38.02 weeks
4 2005-02-25 06:40:15 229.55 weeks 2008-02-28 14:28:40 52.72 weeks
5 2003-11-15 13:01:05 234.30 weeks 1999-12-16 04:23:30 67.67 weeks
25th P 75th P IQR Min
1 1999-08-17 07:59:00 2008-07-19 06:48:36 465.56444 weeks 1999-02-06 23:51:00
2 2008-02-24 08:01:04 2008-09-16 23:32:21 29.37215 weeks 2008-02-24 08:01:04
3 1999-06-01 05:12:00 2008-06-30 00:50:43 473.83122 weeks 1999-02-02 05:57:00
4 1999-08-03 00:23:00 2008-08-16 21:36:23 471.69776 weeks 1999-01-04 04:59:00
5 1999-07-17 10:42:00 2008-07-23 16:02:51 470.60326 weeks 1999-01-04 04:59:00
Max
1 2008-12-06 16:25:11
2 2008-10-12 04:26:02
3 2008-12-23 01:06:02
4 2008-12-15 06:26:36
5 2008-12-23 01:06:02
data_summary_plot(dpltByCylSummaryExample)
make_kable_output(dpltByCylSummaryExample)
number of cylinders | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | date of purchase (POSIXlt class) | 81 | 8.64 | 2003-06-07 09:46:09 | 230.17 weeks | 1999-11-21 23:21:30 | 44.34 weeks | 1999-08-17 07:59:00 | 2008-07-19 06:48:36 | 465.56444 weeks | 1999-02-06 23:51:00 | 2008-12-06 16:25:11 |
5 | date of purchase (POSIXlt class) | 4 | 0.00 | 2008-06-18 22:25:47 | 17.06 weeks | 2008-06-19 02:08:01 | 21.71 weeks | 2008-02-24 08:01:04 | 2008-09-16 23:32:21 | 29.37215 weeks | 2008-02-24 08:01:04 | 2008-10-12 04:26:02 |
6 | date of purchase (POSIXlt class) | 79 | 7.59 | 2002-12-18 08:32:02 | 231.02 weeks | 1999-09-23 08:05:00 | 38.02 weeks | 1999-06-01 05:12:00 | 2008-06-30 00:50:43 | 473.83122 weeks | 1999-02-02 05:57:00 | 2008-12-23 01:06:02 |
8 | date of purchase (POSIXlt class) | 70 | 10.00 | 2005-02-25 06:40:15 | 229.55 weeks | 2008-02-28 14:28:40 | 52.72 weeks | 1999-08-03 00:23:00 | 2008-08-16 21:36:23 | 471.69776 weeks | 1999-01-04 04:59:00 | 2008-12-15 06:26:36 |
Overall | date of purchase (POSIXlt class) | 234 | 8.55 | 2003-11-15 13:01:05 | 234.30 weeks | 1999-12-16 04:23:30 | 67.67 weeks | 1999-07-17 10:42:00 | 2008-07-23 16:02:51 | 470.60326 weeks | 1999-01-04 04:59:00 | 2008-12-23 01:06:02 |
make_complete_output(dpltByCylSummaryExample)
number of cylinders | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | date of purchase (POSIXlt class) | 81 | 8.64 | 2003-06-07 09:46:09 | 230.17 weeks | 1999-11-21 23:21:30 | 44.34 weeks | 1999-08-17 07:59:00 | 2008-07-19 06:48:36 | 465.56444 weeks | 1999-02-06 23:51:00 | 2008-12-06 16:25:11 |
5 | date of purchase (POSIXlt class) | 4 | 0.00 | 2008-06-18 22:25:47 | 17.06 weeks | 2008-06-19 02:08:01 | 21.71 weeks | 2008-02-24 08:01:04 | 2008-09-16 23:32:21 | 29.37215 weeks | 2008-02-24 08:01:04 | 2008-10-12 04:26:02 |
6 | date of purchase (POSIXlt class) | 79 | 7.59 | 2002-12-18 08:32:02 | 231.02 weeks | 1999-09-23 08:05:00 | 38.02 weeks | 1999-06-01 05:12:00 | 2008-06-30 00:50:43 | 473.83122 weeks | 1999-02-02 05:57:00 | 2008-12-23 01:06:02 |
8 | date of purchase (POSIXlt class) | 70 | 10.00 | 2005-02-25 06:40:15 | 229.55 weeks | 2008-02-28 14:28:40 | 52.72 weeks | 1999-08-03 00:23:00 | 2008-08-16 21:36:23 | 471.69776 weeks | 1999-01-04 04:59:00 | 2008-12-15 06:26:36 |
Overall | date of purchase (POSIXlt class) | 234 | 8.55 | 2003-11-15 13:01:05 | 234.30 weeks | 1999-12-16 04:23:30 | 67.67 weeks | 1999-07-17 10:42:00 | 2008-07-23 16:02:51 | 470.60326 weeks | 1999-01-04 04:59:00 | 2008-12-23 01:06:02 |
show(dpltByCylByCommentsSummaryExample)
number of cylinders by some random comments
1 4, .
2 6, .
3 8, .
4 4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
5 6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
6 8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
7 4, Does it also fly?
8 6, Does it also fly?
9 8, Does it also fly?
10 4, Does it come in green?
11 6, Does it come in green?
12 8, Does it come in green?
13 4, I like this car!
14 6, I like this car!
15 8, I like this car!
16 4, Meh.
17 6, Meh.
18 8, Meh.
19 4, Missing
20 6, Missing
21 8, Missing
22 4, This is the worst car ever!
23 6, This is the worst car ever!
24 8, This is the worst car ever!
25 4, want cheese flavoured cars.
26 6, want cheese flavoured cars.
27 8, want cheese flavoured cars.
28 Overall
29 R NA Value
Label N P NA Mean S Dev
1 date of purchase (POSIXlt class) 5 0.00 2002-12-26 13:38:31 260.08 weeks
2 date of purchase (POSIXlt class) 9 11.11 2003-12-31 07:58:18 247.12 weeks
3 date of purchase (POSIXlt class) 11 0.00 2004-05-29 02:24:54 245.48 weeks
4 date of purchase (POSIXlt class) 9 0.00 2002-06-23 10:51:45 223.34 weeks
5 date of purchase (POSIXlt class) 8 12.50 2004-07-24 21:46:13 261.15 weeks
6 date of purchase (POSIXlt class) 4 50.00 2008-05-14 06:42:44 2.05 weeks
7 date of purchase (POSIXlt class) 5 0.00 2003-03-07 13:02:00 254.76 weeks
8 date of purchase (POSIXlt class) 7 14.29 2000-12-31 00:40:43 201.17 weeks
9 date of purchase (POSIXlt class) 4 0.00 2003-12-13 22:25:46 278.25 weeks
10 date of purchase (POSIXlt class) 15 6.67 2003-06-16 07:56:21 236.42 weeks
11 date of purchase (POSIXlt class) 3 0.00 2002-06-30 09:12:42 270.33 weeks
12 date of purchase (POSIXlt class) 5 0.00 2006-10-07 04:49:16 212.99 weeks
13 date of purchase (POSIXlt class) 10 0.00 2004-11-13 07:26:51 239.01 weeks
14 date of purchase (POSIXlt class) 9 0.00 2001-07-09 08:24:32 208.13 weeks
15 date of purchase (POSIXlt class) 4 0.00 2001-07-01 16:33:59 239.79 weeks
16 date of purchase (POSIXlt class) 6 0.00 1999-08-25 13:01:40 9.25 weeks
17 date of purchase (POSIXlt class) 6 0.00 2005-06-27 06:16:57 237.83 weeks
18 date of purchase (POSIXlt class) 6 16.67 2008-04-25 10:42:01 7.88 weeks
19 date of purchase (POSIXlt class) 6 33.33 2004-02-24 10:35:52 267.91 weeks
20 date of purchase (POSIXlt class) 5 0.00 2004-10-25 02:13:27 267.95 weeks
21 date of purchase (POSIXlt class) 14 14.29 2006-04-18 07:42:10 206.29 weeks
22 date of purchase (POSIXlt class) 7 0.00 2003-04-05 22:54:10 245.37 weeks
23 date of purchase (POSIXlt class) 10 10.00 2002-08-17 06:20:29 241.20 weeks
24 date of purchase (POSIXlt class) 5 0.00 2006-08-16 09:39:48 207.93 weeks
25 date of purchase (POSIXlt class) 11 36.36 2004-09-23 19:01:28 249.43 weeks
26 date of purchase (POSIXlt class) 13 7.69 2001-10-13 09:39:46 206.72 weeks
27 date of purchase (POSIXlt class) 9 22.22 2004-09-01 04:43:02 260.61 weeks
28 date of purchase (POSIXlt class) 234 8.55 2003-11-15 13:01:05 234.30 weeks
29 date of purchase (POSIXlt class) 24 4.17 2003-05-14 06:30:18 237.27 weeks
Med MAD 25th P 75th P
1 1999-06-24 10:05:00 17.72 weeks 1999-04-01 16:49:00 2008-05-04 14:32:00
2 2004-01-11 07:48:34 340.15 weeks 1999-06-21 15:04:00 2008-05-07 12:07:04
3 2008-01-08 08:48:50 69.28 weeks 1999-06-17 20:51:00 2008-06-16 11:15:19
4 1999-11-10 03:37:00 28.85 weeks 1999-06-26 23:47:00 2008-01-01 21:17:41
5 2008-04-06 05:33:44 50.36 weeks 1999-03-18 09:04:00 2008-09-11 12:16:05
6 2008-05-14 06:42:44 2.15 weeks 2008-05-04 03:11:56 <NA>
7 1999-12-03 14:02:00 46.46 weeks 1999-04-28 07:00:00 2008-02-04 15:09:51
8 1999-05-30 17:24:30 12.40 weeks 1999-05-05 06:29:00 1999-10-26 18:15:00
9 2003-11-02 13:02:39 348.06 weeks 1999-04-03 04:24:00 2008-04-01 22:16:18
10 1999-11-24 15:28:30 39.39 weeks 1999-09-02 06:35:00 2008-07-23 16:02:51
11 1999-08-29 04:43:00 23.66 weeks 1999-05-09 12:09:00 1999-08-29 04:43:00
12 2008-04-16 10:43:47 42.60 weeks 1999-06-27 02:00:00 2008-11-03 12:36:31
13 2008-02-20 02:59:31 43.53 weeks 1999-07-19 02:45:00 2008-06-06 00:16:30
14 1999-09-01 03:08:00 21.11 weeks 1999-05-20 05:21:00 1999-10-17 20:26:00
15 1999-03-21 09:08:00 2.24 weeks 1999-03-03 10:20:00 1999-03-24 14:33:00
16 1999-08-29 00:33:00 6.94 weeks 1999-08-04 17:17:00 1999-09-09 17:07:00
17 2008-05-07 16:52:30 12.18 weeks 1999-10-01 22:39:00 2008-06-02 22:26:13
18 2008-04-22 04:39:45 4.67 weeks 2008-03-31 03:48:18 2008-05-06 11:35:30
19 2004-02-24 04:39:56 343.94 weeks 1999-09-16 13:56:00 2008-08-08 08:13:36
20 2008-07-21 14:26:31 2.15 weeks 1999-02-23 01:03:00 2008-07-24 04:53:54
21 2008-05-04 23:11:45 28.88 weeks 2008-01-15 10:13:33 2008-10-14 03:45:41
22 1999-10-03 20:59:00 40.91 weeks 1999-04-01 16:56:00 2008-02-06 14:44:36
23 1999-09-23 08:05:00 31.28 weeks 1999-04-28 15:16:00 2008-11-24 04:28:26
24 2008-05-16 15:45:50 18.25 weeks 1999-07-03 08:38:00 2008-06-23 14:12:36
25 2008-02-20 02:52:27 51.90 weeks 1999-09-24 23:41:00 <NA>
26 1999-09-17 07:54:30 16.31 weeks 1999-07-02 02:34:00 2008-04-01 22:06:18
27 2008-01-19 02:34:35 67.07 weeks 1999-06-20 14:17:00 2008-11-30 18:38:11
28 1999-12-16 04:23:30 67.67 weeks 1999-07-17 10:42:00 2008-07-23 16:02:51
29 1999-12-02 03:54:00 64.95 weeks 1999-04-07 12:51:00 2008-05-14 11:48:26
IQR Min Max
1 474.409028 weeks 1999-04-01 16:49:00 2008-07-19 06:48:36
2 463.268161 weeks 1999-06-01 05:12:00 2008-11-12 17:56:39
3 469.514317 weeks 1999-01-31 21:39:00 2008-11-30 10:47:06
4 444.419711 weeks 1999-02-06 23:51:00 2008-06-22 02:19:06
5 495.013104 weeks 1999-02-02 05:57:00 2008-11-29 23:22:31
6 NA weeks 2008-05-04 03:11:56 2008-05-24 10:13:33
7 457.768834 weeks 1999-04-28 07:00:00 2008-12-06 16:25:11
8 24.927183 weeks 1999-02-28 00:08:00 2008-11-08 20:23:21
9 469.528998 weeks 1999-04-03 04:24:00 2008-11-15 11:13:47
10 463.913477 weeks 1999-05-08 12:54:00 2008-10-21 21:32:53
11 15.955754 weeks 1999-05-09 12:09:00 2008-06-22 10:46:07
12 488.211956 weeks 1999-06-27 02:00:00 2008-12-13 19:57:34
13 463.556696 weeks 1999-05-25 09:23:00 2008-09-27 23:41:44
14 21.518353 weeks 1999-04-06 05:38:00 2008-12-23 01:06:02
15 3.025099 weeks 1999-03-03 10:20:00 2008-05-23 10:39:59
16 5.141865 weeks 1999-05-07 21:04:00 1999-11-12 08:41:00
17 452.427303 weeks 1999-06-17 19:37:00 2008-07-19 03:28:08
18 5.189206 weeks 2008-02-19 04:00:08 2008-07-18 04:26:27
19 464.108889 weeks 1999-09-12 02:50:00 2008-08-08 08:13:36
20 491.302669 weeks 1999-02-23 01:03:00 2008-07-31 17:39:54
21 38.955569 weeks 1999-08-03 00:23:00 2008-12-15 06:26:36
22 461.844107 weeks 1999-03-24 16:04:00 2008-06-16 20:57:55
23 499.655995 weeks 1999-02-22 04:55:00 2008-11-29 02:51:30
24 468.318909 weeks 1999-07-03 08:38:00 2008-08-16 21:36:23
25 NA weeks 1999-07-17 10:42:00 2008-10-22 04:49:26
26 456.687728 weeks 1999-02-02 06:27:00 2008-06-30 00:50:43
27 493.031863 weeks 1999-01-06 16:15:00 2008-11-30 18:38:11
28 470.603259 weeks 1999-01-04 04:59:00 2008-12-23 01:06:02
29 474.993793 weeks 1999-01-04 04:59:00 2008-10-23 19:14:24
data_summary_table(dpltByCylByCommentsSummaryExample)
number of cylinders by some random comments
1 4, .
2 6, .
3 8, .
4 4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
5 6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
6 8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
7 4, Does it also fly?
8 6, Does it also fly?
9 8, Does it also fly?
10 4, Does it come in green?
11 6, Does it come in green?
12 8, Does it come in green?
13 4, I like this car!
14 6, I like this car!
15 8, I like this car!
16 4, Meh.
17 6, Meh.
18 8, Meh.
19 4, Missing
20 6, Missing
21 8, Missing
22 4, This is the worst car ever!
23 6, This is the worst car ever!
24 8, This is the worst car ever!
25 4, want cheese flavoured cars.
26 6, want cheese flavoured cars.
27 8, want cheese flavoured cars.
28 Overall
29 R NA Value
Label N P NA Mean S Dev
1 date of purchase (POSIXlt class) 5 0.00 2002-12-26 13:38:31 260.08 weeks
2 date of purchase (POSIXlt class) 9 11.11 2003-12-31 07:58:18 247.12 weeks
3 date of purchase (POSIXlt class) 11 0.00 2004-05-29 02:24:54 245.48 weeks
4 date of purchase (POSIXlt class) 9 0.00 2002-06-23 10:51:45 223.34 weeks
5 date of purchase (POSIXlt class) 8 12.50 2004-07-24 21:46:13 261.15 weeks
6 date of purchase (POSIXlt class) 4 50.00 2008-05-14 06:42:44 2.05 weeks
7 date of purchase (POSIXlt class) 5 0.00 2003-03-07 13:02:00 254.76 weeks
8 date of purchase (POSIXlt class) 7 14.29 2000-12-31 00:40:43 201.17 weeks
9 date of purchase (POSIXlt class) 4 0.00 2003-12-13 22:25:46 278.25 weeks
10 date of purchase (POSIXlt class) 15 6.67 2003-06-16 07:56:21 236.42 weeks
11 date of purchase (POSIXlt class) 3 0.00 2002-06-30 09:12:42 270.33 weeks
12 date of purchase (POSIXlt class) 5 0.00 2006-10-07 04:49:16 212.99 weeks
13 date of purchase (POSIXlt class) 10 0.00 2004-11-13 07:26:51 239.01 weeks
14 date of purchase (POSIXlt class) 9 0.00 2001-07-09 08:24:32 208.13 weeks
15 date of purchase (POSIXlt class) 4 0.00 2001-07-01 16:33:59 239.79 weeks
16 date of purchase (POSIXlt class) 6 0.00 1999-08-25 13:01:40 9.25 weeks
17 date of purchase (POSIXlt class) 6 0.00 2005-06-27 06:16:57 237.83 weeks
18 date of purchase (POSIXlt class) 6 16.67 2008-04-25 10:42:01 7.88 weeks
19 date of purchase (POSIXlt class) 6 33.33 2004-02-24 10:35:52 267.91 weeks
20 date of purchase (POSIXlt class) 5 0.00 2004-10-25 02:13:27 267.95 weeks
21 date of purchase (POSIXlt class) 14 14.29 2006-04-18 07:42:10 206.29 weeks
22 date of purchase (POSIXlt class) 7 0.00 2003-04-05 22:54:10 245.37 weeks
23 date of purchase (POSIXlt class) 10 10.00 2002-08-17 06:20:29 241.20 weeks
24 date of purchase (POSIXlt class) 5 0.00 2006-08-16 09:39:48 207.93 weeks
25 date of purchase (POSIXlt class) 11 36.36 2004-09-23 19:01:28 249.43 weeks
26 date of purchase (POSIXlt class) 13 7.69 2001-10-13 09:39:46 206.72 weeks
27 date of purchase (POSIXlt class) 9 22.22 2004-09-01 04:43:02 260.61 weeks
28 date of purchase (POSIXlt class) 234 8.55 2003-11-15 13:01:05 234.30 weeks
29 date of purchase (POSIXlt class) 24 4.17 2003-05-14 06:30:18 237.27 weeks
Med MAD 25th P 75th P
1 1999-06-24 10:05:00 17.72 weeks 1999-04-01 16:49:00 2008-05-04 14:32:00
2 2004-01-11 07:48:34 340.15 weeks 1999-06-21 15:04:00 2008-05-07 12:07:04
3 2008-01-08 08:48:50 69.28 weeks 1999-06-17 20:51:00 2008-06-16 11:15:19
4 1999-11-10 03:37:00 28.85 weeks 1999-06-26 23:47:00 2008-01-01 21:17:41
5 2008-04-06 05:33:44 50.36 weeks 1999-03-18 09:04:00 2008-09-11 12:16:05
6 2008-05-14 06:42:44 2.15 weeks 2008-05-04 03:11:56 <NA>
7 1999-12-03 14:02:00 46.46 weeks 1999-04-28 07:00:00 2008-02-04 15:09:51
8 1999-05-30 17:24:30 12.40 weeks 1999-05-05 06:29:00 1999-10-26 18:15:00
9 2003-11-02 13:02:39 348.06 weeks 1999-04-03 04:24:00 2008-04-01 22:16:18
10 1999-11-24 15:28:30 39.39 weeks 1999-09-02 06:35:00 2008-07-23 16:02:51
11 1999-08-29 04:43:00 23.66 weeks 1999-05-09 12:09:00 1999-08-29 04:43:00
12 2008-04-16 10:43:47 42.60 weeks 1999-06-27 02:00:00 2008-11-03 12:36:31
13 2008-02-20 02:59:31 43.53 weeks 1999-07-19 02:45:00 2008-06-06 00:16:30
14 1999-09-01 03:08:00 21.11 weeks 1999-05-20 05:21:00 1999-10-17 20:26:00
15 1999-03-21 09:08:00 2.24 weeks 1999-03-03 10:20:00 1999-03-24 14:33:00
16 1999-08-29 00:33:00 6.94 weeks 1999-08-04 17:17:00 1999-09-09 17:07:00
17 2008-05-07 16:52:30 12.18 weeks 1999-10-01 22:39:00 2008-06-02 22:26:13
18 2008-04-22 04:39:45 4.67 weeks 2008-03-31 03:48:18 2008-05-06 11:35:30
19 2004-02-24 04:39:56 343.94 weeks 1999-09-16 13:56:00 2008-08-08 08:13:36
20 2008-07-21 14:26:31 2.15 weeks 1999-02-23 01:03:00 2008-07-24 04:53:54
21 2008-05-04 23:11:45 28.88 weeks 2008-01-15 10:13:33 2008-10-14 03:45:41
22 1999-10-03 20:59:00 40.91 weeks 1999-04-01 16:56:00 2008-02-06 14:44:36
23 1999-09-23 08:05:00 31.28 weeks 1999-04-28 15:16:00 2008-11-24 04:28:26
24 2008-05-16 15:45:50 18.25 weeks 1999-07-03 08:38:00 2008-06-23 14:12:36
25 2008-02-20 02:52:27 51.90 weeks 1999-09-24 23:41:00 <NA>
26 1999-09-17 07:54:30 16.31 weeks 1999-07-02 02:34:00 2008-04-01 22:06:18
27 2008-01-19 02:34:35 67.07 weeks 1999-06-20 14:17:00 2008-11-30 18:38:11
28 1999-12-16 04:23:30 67.67 weeks 1999-07-17 10:42:00 2008-07-23 16:02:51
29 1999-12-02 03:54:00 64.95 weeks 1999-04-07 12:51:00 2008-05-14 11:48:26
IQR Min Max
1 474.409028 weeks 1999-04-01 16:49:00 2008-07-19 06:48:36
2 463.268161 weeks 1999-06-01 05:12:00 2008-11-12 17:56:39
3 469.514317 weeks 1999-01-31 21:39:00 2008-11-30 10:47:06
4 444.419711 weeks 1999-02-06 23:51:00 2008-06-22 02:19:06
5 495.013104 weeks 1999-02-02 05:57:00 2008-11-29 23:22:31
6 NA weeks 2008-05-04 03:11:56 2008-05-24 10:13:33
7 457.768834 weeks 1999-04-28 07:00:00 2008-12-06 16:25:11
8 24.927183 weeks 1999-02-28 00:08:00 2008-11-08 20:23:21
9 469.528998 weeks 1999-04-03 04:24:00 2008-11-15 11:13:47
10 463.913477 weeks 1999-05-08 12:54:00 2008-10-21 21:32:53
11 15.955754 weeks 1999-05-09 12:09:00 2008-06-22 10:46:07
12 488.211956 weeks 1999-06-27 02:00:00 2008-12-13 19:57:34
13 463.556696 weeks 1999-05-25 09:23:00 2008-09-27 23:41:44
14 21.518353 weeks 1999-04-06 05:38:00 2008-12-23 01:06:02
15 3.025099 weeks 1999-03-03 10:20:00 2008-05-23 10:39:59
16 5.141865 weeks 1999-05-07 21:04:00 1999-11-12 08:41:00
17 452.427303 weeks 1999-06-17 19:37:00 2008-07-19 03:28:08
18 5.189206 weeks 2008-02-19 04:00:08 2008-07-18 04:26:27
19 464.108889 weeks 1999-09-12 02:50:00 2008-08-08 08:13:36
20 491.302669 weeks 1999-02-23 01:03:00 2008-07-31 17:39:54
21 38.955569 weeks 1999-08-03 00:23:00 2008-12-15 06:26:36
22 461.844107 weeks 1999-03-24 16:04:00 2008-06-16 20:57:55
23 499.655995 weeks 1999-02-22 04:55:00 2008-11-29 02:51:30
24 468.318909 weeks 1999-07-03 08:38:00 2008-08-16 21:36:23
25 NA weeks 1999-07-17 10:42:00 2008-10-22 04:49:26
26 456.687728 weeks 1999-02-02 06:27:00 2008-06-30 00:50:43
27 493.031863 weeks 1999-01-06 16:15:00 2008-11-30 18:38:11
28 470.603259 weeks 1999-01-04 04:59:00 2008-12-23 01:06:02
29 474.993793 weeks 1999-01-04 04:59:00 2008-10-23 19:14:24
data_summary_plot(dpltByCylByCommentsSummaryExample)
make_kable_output(dpltByCylByCommentsSummaryExample)
number of cylinders by some random comments | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4, . | date of purchase (POSIXlt class) | 5 | 0.00 | 2002-12-26 13:38:31 | 260.08 weeks | 1999-06-24 10:05:00 | 17.72 weeks | 1999-04-01 16:49:00 | 2008-05-04 14:32:00 | 474.409028 weeks | 1999-04-01 16:49:00 | 2008-07-19 06:48:36 |
6, . | date of purchase (POSIXlt class) | 9 | 11.11 | 2003-12-31 07:58:18 | 247.12 weeks | 2004-01-11 07:48:34 | 340.15 weeks | 1999-06-21 15:04:00 | 2008-05-07 12:07:04 | 463.268161 weeks | 1999-06-01 05:12:00 | 2008-11-12 17:56:39 |
8, . | date of purchase (POSIXlt class) | 11 | 0.00 | 2004-05-29 02:24:54 | 245.48 weeks | 2008-01-08 08:48:50 | 69.28 weeks | 1999-06-17 20:51:00 | 2008-06-16 11:15:19 | 469.514317 weeks | 1999-01-31 21:39:00 | 2008-11-30 10:47:06 |
4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (POSIXlt class) | 9 | 0.00 | 2002-06-23 10:51:45 | 223.34 weeks | 1999-11-10 03:37:00 | 28.85 weeks | 1999-06-26 23:47:00 | 2008-01-01 21:17:41 | 444.419711 weeks | 1999-02-06 23:51:00 | 2008-06-22 02:19:06 |
6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (POSIXlt class) | 8 | 12.50 | 2004-07-24 21:46:13 | 261.15 weeks | 2008-04-06 05:33:44 | 50.36 weeks | 1999-03-18 09:04:00 | 2008-09-11 12:16:05 | 495.013103 weeks | 1999-02-02 05:57:00 | 2008-11-29 23:22:31 |
8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (POSIXlt class) | 4 | 50.00 | 2008-05-14 06:42:44 | 2.05 weeks | 2008-05-14 06:42:44 | 2.15 weeks | 2008-05-04 03:11:56 | NA | NA weeks | 2008-05-04 03:11:56 | 2008-05-24 10:13:33 |
4, Does it also fly? | date of purchase (POSIXlt class) | 5 | 0.00 | 2003-03-07 13:02:00 | 254.76 weeks | 1999-12-03 14:02:00 | 46.46 weeks | 1999-04-28 07:00:00 | 2008-02-04 15:09:51 | 457.768834 weeks | 1999-04-28 07:00:00 | 2008-12-06 16:25:11 |
6, Does it also fly? | date of purchase (POSIXlt class) | 7 | 14.29 | 2000-12-31 00:40:43 | 201.17 weeks | 1999-05-30 17:24:30 | 12.40 weeks | 1999-05-05 06:29:00 | 1999-10-26 18:15:00 | 24.927183 weeks | 1999-02-28 00:08:00 | 2008-11-08 20:23:21 |
8, Does it also fly? | date of purchase (POSIXlt class) | 4 | 0.00 | 2003-12-13 22:25:46 | 278.25 weeks | 2003-11-02 13:02:39 | 348.06 weeks | 1999-04-03 04:24:00 | 2008-04-01 22:16:18 | 469.528998 weeks | 1999-04-03 04:24:00 | 2008-11-15 11:13:47 |
4, Does it come in green? | date of purchase (POSIXlt class) | 15 | 6.67 | 2003-06-16 07:56:21 | 236.42 weeks | 1999-11-24 15:28:30 | 39.39 weeks | 1999-09-02 06:35:00 | 2008-07-23 16:02:51 | 463.913477 weeks | 1999-05-08 12:54:00 | 2008-10-21 21:32:53 |
6, Does it come in green? | date of purchase (POSIXlt class) | 3 | 0.00 | 2002-06-30 09:12:42 | 270.33 weeks | 1999-08-29 04:43:00 | 23.66 weeks | 1999-05-09 12:09:00 | 1999-08-29 04:43:00 | 15.955754 weeks | 1999-05-09 12:09:00 | 2008-06-22 10:46:07 |
8, Does it come in green? | date of purchase (POSIXlt class) | 5 | 0.00 | 2006-10-07 04:49:16 | 212.99 weeks | 2008-04-16 10:43:47 | 42.60 weeks | 1999-06-27 02:00:00 | 2008-11-03 12:36:31 | 488.211956 weeks | 1999-06-27 02:00:00 | 2008-12-13 19:57:34 |
4, I like this car! | date of purchase (POSIXlt class) | 10 | 0.00 | 2004-11-13 07:26:51 | 239.01 weeks | 2008-02-20 02:59:31 | 43.53 weeks | 1999-07-19 02:45:00 | 2008-06-06 00:16:30 | 463.556696 weeks | 1999-05-25 09:23:00 | 2008-09-27 23:41:44 |
6, I like this car! | date of purchase (POSIXlt class) | 9 | 0.00 | 2001-07-09 08:24:32 | 208.13 weeks | 1999-09-01 03:08:00 | 21.11 weeks | 1999-05-20 05:21:00 | 1999-10-17 20:26:00 | 21.518353 weeks | 1999-04-06 05:38:00 | 2008-12-23 01:06:02 |
8, I like this car! | date of purchase (POSIXlt class) | 4 | 0.00 | 2001-07-01 16:33:59 | 239.79 weeks | 1999-03-21 09:08:00 | 2.24 weeks | 1999-03-03 10:20:00 | 1999-03-24 14:33:00 | 3.025099 weeks | 1999-03-03 10:20:00 | 2008-05-23 10:39:59 |
4, Meh. | date of purchase (POSIXlt class) | 6 | 0.00 | 1999-08-25 13:01:40 | 9.25 weeks | 1999-08-29 00:33:00 | 6.94 weeks | 1999-08-04 17:17:00 | 1999-09-09 17:07:00 | 5.141865 weeks | 1999-05-07 21:04:00 | 1999-11-12 08:41:00 |
6, Meh. | date of purchase (POSIXlt class) | 6 | 0.00 | 2005-06-27 06:16:57 | 237.83 weeks | 2008-05-07 16:52:30 | 12.18 weeks | 1999-10-01 22:39:00 | 2008-06-02 22:26:13 | 452.427303 weeks | 1999-06-17 19:37:00 | 2008-07-19 03:28:08 |
8, Meh. | date of purchase (POSIXlt class) | 6 | 16.67 | 2008-04-25 10:42:01 | 7.88 weeks | 2008-04-22 04:39:45 | 4.67 weeks | 2008-03-31 03:48:18 | 2008-05-06 11:35:30 | 5.189206 weeks | 2008-02-19 04:00:08 | 2008-07-18 04:26:27 |
4, Missing | date of purchase (POSIXlt class) | 6 | 33.33 | 2004-02-24 10:35:52 | 267.91 weeks | 2004-02-24 04:39:56 | 343.94 weeks | 1999-09-16 13:56:00 | 2008-08-08 08:13:36 | 464.108889 weeks | 1999-09-12 02:50:00 | 2008-08-08 08:13:36 |
6, Missing | date of purchase (POSIXlt class) | 5 | 0.00 | 2004-10-25 02:13:27 | 267.95 weeks | 2008-07-21 14:26:31 | 2.15 weeks | 1999-02-23 01:03:00 | 2008-07-24 04:53:54 | 491.302669 weeks | 1999-02-23 01:03:00 | 2008-07-31 17:39:54 |
8, Missing | date of purchase (POSIXlt class) | 14 | 14.29 | 2006-04-18 07:42:10 | 206.29 weeks | 2008-05-04 23:11:45 | 28.88 weeks | 2008-01-15 10:13:33 | 2008-10-14 03:45:41 | 38.955569 weeks | 1999-08-03 00:23:00 | 2008-12-15 06:26:36 |
4, This is the worst car ever! | date of purchase (POSIXlt class) | 7 | 0.00 | 2003-04-05 22:54:10 | 245.37 weeks | 1999-10-03 20:59:00 | 40.91 weeks | 1999-04-01 16:56:00 | 2008-02-06 14:44:36 | 461.844107 weeks | 1999-03-24 16:04:00 | 2008-06-16 20:57:55 |
6, This is the worst car ever! | date of purchase (POSIXlt class) | 10 | 10.00 | 2002-08-17 06:20:29 | 241.20 weeks | 1999-09-23 08:05:00 | 31.28 weeks | 1999-04-28 15:16:00 | 2008-11-24 04:28:26 | 499.655995 weeks | 1999-02-22 04:55:00 | 2008-11-29 02:51:30 |
8, This is the worst car ever! | date of purchase (POSIXlt class) | 5 | 0.00 | 2006-08-16 09:39:48 | 207.93 weeks | 2008-05-16 15:45:50 | 18.25 weeks | 1999-07-03 08:38:00 | 2008-06-23 14:12:36 | 468.318909 weeks | 1999-07-03 08:38:00 | 2008-08-16 21:36:23 |
4, want cheese flavoured cars. | date of purchase (POSIXlt class) | 11 | 36.36 | 2004-09-23 19:01:28 | 249.43 weeks | 2008-02-20 02:52:27 | 51.90 weeks | 1999-09-24 23:41:00 | NA | NA weeks | 1999-07-17 10:42:00 | 2008-10-22 04:49:26 |
6, want cheese flavoured cars. | date of purchase (POSIXlt class) | 13 | 7.69 | 2001-10-13 09:39:46 | 206.72 weeks | 1999-09-17 07:54:30 | 16.31 weeks | 1999-07-02 02:34:00 | 2008-04-01 22:06:18 | 456.687728 weeks | 1999-02-02 06:27:00 | 2008-06-30 00:50:43 |
8, want cheese flavoured cars. | date of purchase (POSIXlt class) | 9 | 22.22 | 2004-09-01 04:43:02 | 260.61 weeks | 2008-01-19 02:34:35 | 67.07 weeks | 1999-06-20 14:17:00 | 2008-11-30 18:38:11 | 493.031863 weeks | 1999-01-06 16:15:00 | 2008-11-30 18:38:11 |
Overall | date of purchase (POSIXlt class) | 234 | 8.55 | 2003-11-15 13:01:05 | 234.30 weeks | 1999-12-16 04:23:30 | 67.67 weeks | 1999-07-17 10:42:00 | 2008-07-23 16:02:51 | 470.603259 weeks | 1999-01-04 04:59:00 | 2008-12-23 01:06:02 |
R NA Value | date of purchase (POSIXlt class) | 24 | 4.17 | 2003-05-14 06:30:18 | 237.27 weeks | 1999-12-02 03:54:00 | 64.95 weeks | 1999-04-07 12:51:00 | 2008-05-14 11:48:26 | 474.993793 weeks | 1999-01-04 04:59:00 | 2008-10-23 19:14:24 |
make_complete_output(dpltByCylByCommentsSummaryExample)
number of cylinders by some random comments | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4, . | date of purchase (POSIXlt class) | 5 | 0.00 | 2002-12-26 13:38:31 | 260.08 weeks | 1999-06-24 10:05:00 | 17.72 weeks | 1999-04-01 16:49:00 | 2008-05-04 14:32:00 | 474.409028 weeks | 1999-04-01 16:49:00 | 2008-07-19 06:48:36 |
6, . | date of purchase (POSIXlt class) | 9 | 11.11 | 2003-12-31 07:58:18 | 247.12 weeks | 2004-01-11 07:48:34 | 340.15 weeks | 1999-06-21 15:04:00 | 2008-05-07 12:07:04 | 463.268161 weeks | 1999-06-01 05:12:00 | 2008-11-12 17:56:39 |
8, . | date of purchase (POSIXlt class) | 11 | 0.00 | 2004-05-29 02:24:54 | 245.48 weeks | 2008-01-08 08:48:50 | 69.28 weeks | 1999-06-17 20:51:00 | 2008-06-16 11:15:19 | 469.514317 weeks | 1999-01-31 21:39:00 | 2008-11-30 10:47:06 |
4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (POSIXlt class) | 9 | 0.00 | 2002-06-23 10:51:45 | 223.34 weeks | 1999-11-10 03:37:00 | 28.85 weeks | 1999-06-26 23:47:00 | 2008-01-01 21:17:41 | 444.419711 weeks | 1999-02-06 23:51:00 | 2008-06-22 02:19:06 |
6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (POSIXlt class) | 8 | 12.50 | 2004-07-24 21:46:13 | 261.15 weeks | 2008-04-06 05:33:44 | 50.36 weeks | 1999-03-18 09:04:00 | 2008-09-11 12:16:05 | 495.013103 weeks | 1999-02-02 05:57:00 | 2008-11-29 23:22:31 |
8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (POSIXlt class) | 4 | 50.00 | 2008-05-14 06:42:44 | 2.05 weeks | 2008-05-14 06:42:44 | 2.15 weeks | 2008-05-04 03:11:56 | NA | NA weeks | 2008-05-04 03:11:56 | 2008-05-24 10:13:33 |
4, Does it also fly? | date of purchase (POSIXlt class) | 5 | 0.00 | 2003-03-07 13:02:00 | 254.76 weeks | 1999-12-03 14:02:00 | 46.46 weeks | 1999-04-28 07:00:00 | 2008-02-04 15:09:51 | 457.768834 weeks | 1999-04-28 07:00:00 | 2008-12-06 16:25:11 |
6, Does it also fly? | date of purchase (POSIXlt class) | 7 | 14.29 | 2000-12-31 00:40:43 | 201.17 weeks | 1999-05-30 17:24:30 | 12.40 weeks | 1999-05-05 06:29:00 | 1999-10-26 18:15:00 | 24.927183 weeks | 1999-02-28 00:08:00 | 2008-11-08 20:23:21 |
8, Does it also fly? | date of purchase (POSIXlt class) | 4 | 0.00 | 2003-12-13 22:25:46 | 278.25 weeks | 2003-11-02 13:02:39 | 348.06 weeks | 1999-04-03 04:24:00 | 2008-04-01 22:16:18 | 469.528998 weeks | 1999-04-03 04:24:00 | 2008-11-15 11:13:47 |
4, Does it come in green? | date of purchase (POSIXlt class) | 15 | 6.67 | 2003-06-16 07:56:21 | 236.42 weeks | 1999-11-24 15:28:30 | 39.39 weeks | 1999-09-02 06:35:00 | 2008-07-23 16:02:51 | 463.913477 weeks | 1999-05-08 12:54:00 | 2008-10-21 21:32:53 |
6, Does it come in green? | date of purchase (POSIXlt class) | 3 | 0.00 | 2002-06-30 09:12:42 | 270.33 weeks | 1999-08-29 04:43:00 | 23.66 weeks | 1999-05-09 12:09:00 | 1999-08-29 04:43:00 | 15.955754 weeks | 1999-05-09 12:09:00 | 2008-06-22 10:46:07 |
8, Does it come in green? | date of purchase (POSIXlt class) | 5 | 0.00 | 2006-10-07 04:49:16 | 212.99 weeks | 2008-04-16 10:43:47 | 42.60 weeks | 1999-06-27 02:00:00 | 2008-11-03 12:36:31 | 488.211956 weeks | 1999-06-27 02:00:00 | 2008-12-13 19:57:34 |
4, I like this car! | date of purchase (POSIXlt class) | 10 | 0.00 | 2004-11-13 07:26:51 | 239.01 weeks | 2008-02-20 02:59:31 | 43.53 weeks | 1999-07-19 02:45:00 | 2008-06-06 00:16:30 | 463.556696 weeks | 1999-05-25 09:23:00 | 2008-09-27 23:41:44 |
6, I like this car! | date of purchase (POSIXlt class) | 9 | 0.00 | 2001-07-09 08:24:32 | 208.13 weeks | 1999-09-01 03:08:00 | 21.11 weeks | 1999-05-20 05:21:00 | 1999-10-17 20:26:00 | 21.518353 weeks | 1999-04-06 05:38:00 | 2008-12-23 01:06:02 |
8, I like this car! | date of purchase (POSIXlt class) | 4 | 0.00 | 2001-07-01 16:33:59 | 239.79 weeks | 1999-03-21 09:08:00 | 2.24 weeks | 1999-03-03 10:20:00 | 1999-03-24 14:33:00 | 3.025099 weeks | 1999-03-03 10:20:00 | 2008-05-23 10:39:59 |
4, Meh. | date of purchase (POSIXlt class) | 6 | 0.00 | 1999-08-25 13:01:40 | 9.25 weeks | 1999-08-29 00:33:00 | 6.94 weeks | 1999-08-04 17:17:00 | 1999-09-09 17:07:00 | 5.141865 weeks | 1999-05-07 21:04:00 | 1999-11-12 08:41:00 |
6, Meh. | date of purchase (POSIXlt class) | 6 | 0.00 | 2005-06-27 06:16:57 | 237.83 weeks | 2008-05-07 16:52:30 | 12.18 weeks | 1999-10-01 22:39:00 | 2008-06-02 22:26:13 | 452.427303 weeks | 1999-06-17 19:37:00 | 2008-07-19 03:28:08 |
8, Meh. | date of purchase (POSIXlt class) | 6 | 16.67 | 2008-04-25 10:42:01 | 7.88 weeks | 2008-04-22 04:39:45 | 4.67 weeks | 2008-03-31 03:48:18 | 2008-05-06 11:35:30 | 5.189206 weeks | 2008-02-19 04:00:08 | 2008-07-18 04:26:27 |
4, Missing | date of purchase (POSIXlt class) | 6 | 33.33 | 2004-02-24 10:35:52 | 267.91 weeks | 2004-02-24 04:39:56 | 343.94 weeks | 1999-09-16 13:56:00 | 2008-08-08 08:13:36 | 464.108889 weeks | 1999-09-12 02:50:00 | 2008-08-08 08:13:36 |
6, Missing | date of purchase (POSIXlt class) | 5 | 0.00 | 2004-10-25 02:13:27 | 267.95 weeks | 2008-07-21 14:26:31 | 2.15 weeks | 1999-02-23 01:03:00 | 2008-07-24 04:53:54 | 491.302669 weeks | 1999-02-23 01:03:00 | 2008-07-31 17:39:54 |
8, Missing | date of purchase (POSIXlt class) | 14 | 14.29 | 2006-04-18 07:42:10 | 206.29 weeks | 2008-05-04 23:11:45 | 28.88 weeks | 2008-01-15 10:13:33 | 2008-10-14 03:45:41 | 38.955569 weeks | 1999-08-03 00:23:00 | 2008-12-15 06:26:36 |
4, This is the worst car ever! | date of purchase (POSIXlt class) | 7 | 0.00 | 2003-04-05 22:54:10 | 245.37 weeks | 1999-10-03 20:59:00 | 40.91 weeks | 1999-04-01 16:56:00 | 2008-02-06 14:44:36 | 461.844107 weeks | 1999-03-24 16:04:00 | 2008-06-16 20:57:55 |
6, This is the worst car ever! | date of purchase (POSIXlt class) | 10 | 10.00 | 2002-08-17 06:20:29 | 241.20 weeks | 1999-09-23 08:05:00 | 31.28 weeks | 1999-04-28 15:16:00 | 2008-11-24 04:28:26 | 499.655995 weeks | 1999-02-22 04:55:00 | 2008-11-29 02:51:30 |
8, This is the worst car ever! | date of purchase (POSIXlt class) | 5 | 0.00 | 2006-08-16 09:39:48 | 207.93 weeks | 2008-05-16 15:45:50 | 18.25 weeks | 1999-07-03 08:38:00 | 2008-06-23 14:12:36 | 468.318909 weeks | 1999-07-03 08:38:00 | 2008-08-16 21:36:23 |
4, want cheese flavoured cars. | date of purchase (POSIXlt class) | 11 | 36.36 | 2004-09-23 19:01:28 | 249.43 weeks | 2008-02-20 02:52:27 | 51.90 weeks | 1999-09-24 23:41:00 | NA | NA weeks | 1999-07-17 10:42:00 | 2008-10-22 04:49:26 |
6, want cheese flavoured cars. | date of purchase (POSIXlt class) | 13 | 7.69 | 2001-10-13 09:39:46 | 206.72 weeks | 1999-09-17 07:54:30 | 16.31 weeks | 1999-07-02 02:34:00 | 2008-04-01 22:06:18 | 456.687728 weeks | 1999-02-02 06:27:00 | 2008-06-30 00:50:43 |
8, want cheese flavoured cars. | date of purchase (POSIXlt class) | 9 | 22.22 | 2004-09-01 04:43:02 | 260.61 weeks | 2008-01-19 02:34:35 | 67.07 weeks | 1999-06-20 14:17:00 | 2008-11-30 18:38:11 | 493.031863 weeks | 1999-01-06 16:15:00 | 2008-11-30 18:38:11 |
Overall | date of purchase (POSIXlt class) | 234 | 8.55 | 2003-11-15 13:01:05 | 234.30 weeks | 1999-12-16 04:23:30 | 67.67 weeks | 1999-07-17 10:42:00 | 2008-07-23 16:02:51 | 470.603259 weeks | 1999-01-04 04:59:00 | 2008-12-23 01:06:02 |
R NA Value | date of purchase (POSIXlt class) | 24 | 4.17 | 2003-05-14 06:30:18 | 237.27 weeks | 1999-12-02 03:54:00 | 64.95 weeks | 1999-04-07 12:51:00 | 2008-05-14 11:48:26 | 474.993793 weeks | 1999-01-04 04:59:00 | 2008-10-23 19:14:24 |
show(dpctSummaryExample)
Label N P NA Mean S Dev
1 date of purchase (POSIXct class) 214 8.55 2003-11-21 01:59:50 234.68 weeks
Med MAD 25th P 75th P
1 1999-12-20 21:58:00 71.08 weeks 1999-07-12 06:29:00 2008-08-08 04:44:28
IQR Min Max
1 473.5611 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
data_summary_table(dpctSummaryExample)
Label N P NA Mean S Dev
1 date of purchase (POSIXct class) 214 8.55 2003-11-21 01:59:50 234.68 weeks
Med MAD 25th P 75th P
1 1999-12-20 21:58:00 71.08 weeks 1999-07-12 06:29:00 2008-08-08 04:44:28
IQR Min Max
1 473.5611 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
data_summary_plot(dpctSummaryExample)
make_kable_output(dpctSummaryExample)
Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
date of purchase (POSIXct class) | 214 | 8.55 | 2003-11-21 01:59:50 | 234.68 weeks | 1999-12-20 21:58:00 | 71.08 weeks | 1999-07-12 06:29:00 | 2008-08-08 04:44:28 | 473.5611 weeks | 1999-01-14 10:39:00 | 2008-12-23 02:41:31 |
make_complete_output(dpctSummaryExample)
Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
date of purchase (POSIXct class) | 214 | 8.55 | 2003-11-21 01:59:50 | 234.68 weeks | 1999-12-20 21:58:00 | 71.08 weeks | 1999-07-12 06:29:00 | 2008-08-08 04:44:28 | 473.5611 weeks | 1999-01-14 10:39:00 | 2008-12-23 02:41:31 |
show(dpctByCylSummaryExample)
number of cylinders Label N P NA
1 4 date of purchase (POSIXct class) 75 7.41
2 5 date of purchase (POSIXct class) 3 25.00
3 6 date of purchase (POSIXct class) 72 8.86
4 8 date of purchase (POSIXct class) 64 8.57
5 Overall date of purchase (POSIXct class) 214 8.55
Mean S Dev Med MAD
1 2003-07-18 01:05:46 234.79 weeks 1999-11-04 12:33:00 59.78 weeks
2 2008-05-03 16:56:21 22.58 weeks 2008-02-11 11:23:10 3.77 weeks
3 2003-02-19 22:01:34 232.07 weeks 1999-11-01 13:42:00 49.24 weeks
4 2004-12-05 01:39:52 230.29 weeks 2008-02-22 08:13:23 42.02 weeks
5 2003-11-21 01:59:50 234.68 weeks 1999-12-20 21:58:00 71.08 weeks
25th P 75th P IQR Min
1 1999-06-29 06:05:00 2008-06-13 12:42:47 467.4680 weeks 1999-01-19 10:45:00
2 2008-01-24 15:45:51 2008-11-01 21:40:02 40.3149 weeks 2008-01-24 15:45:51
3 1999-06-15 02:46:00 2008-07-22 21:44:19 475.1129 weeks 1999-01-19 05:05:00
4 1999-09-07 08:18:00 2008-07-30 23:21:17 464.2325 weeks 1999-01-14 10:39:00
5 1999-07-12 06:29:00 2008-08-08 04:44:28 473.5611 weeks 1999-01-14 10:39:00
Max
1 2008-12-10 14:15:29
2 2008-11-01 21:40:02
3 2008-12-19 04:14:10
4 2008-12-23 02:41:31
5 2008-12-23 02:41:31
data_summary_table(dpctByCylSummaryExample)
number of cylinders Label N P NA
1 4 date of purchase (POSIXct class) 75 7.41
2 5 date of purchase (POSIXct class) 3 25.00
3 6 date of purchase (POSIXct class) 72 8.86
4 8 date of purchase (POSIXct class) 64 8.57
5 Overall date of purchase (POSIXct class) 214 8.55
Mean S Dev Med MAD
1 2003-07-18 01:05:46 234.79 weeks 1999-11-04 12:33:00 59.78 weeks
2 2008-05-03 16:56:21 22.58 weeks 2008-02-11 11:23:10 3.77 weeks
3 2003-02-19 22:01:34 232.07 weeks 1999-11-01 13:42:00 49.24 weeks
4 2004-12-05 01:39:52 230.29 weeks 2008-02-22 08:13:23 42.02 weeks
5 2003-11-21 01:59:50 234.68 weeks 1999-12-20 21:58:00 71.08 weeks
25th P 75th P IQR Min
1 1999-06-29 06:05:00 2008-06-13 12:42:47 467.4680 weeks 1999-01-19 10:45:00
2 2008-01-24 15:45:51 2008-11-01 21:40:02 40.3149 weeks 2008-01-24 15:45:51
3 1999-06-15 02:46:00 2008-07-22 21:44:19 475.1129 weeks 1999-01-19 05:05:00
4 1999-09-07 08:18:00 2008-07-30 23:21:17 464.2325 weeks 1999-01-14 10:39:00
5 1999-07-12 06:29:00 2008-08-08 04:44:28 473.5611 weeks 1999-01-14 10:39:00
Max
1 2008-12-10 14:15:29
2 2008-11-01 21:40:02
3 2008-12-19 04:14:10
4 2008-12-23 02:41:31
5 2008-12-23 02:41:31
data_summary_plot(dpctByCylSummaryExample)
make_kable_output(dpctByCylSummaryExample)
number of cylinders | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | date of purchase (POSIXct class) | 75 | 7.41 | 2003-07-18 01:05:46 | 234.79 weeks | 1999-11-04 12:33:00 | 59.78 weeks | 1999-06-29 06:05:00 | 2008-06-13 12:42:47 | 467.4680 weeks | 1999-01-19 10:45:00 | 2008-12-10 14:15:29 |
5 | date of purchase (POSIXct class) | 3 | 25.00 | 2008-05-03 16:56:21 | 22.58 weeks | 2008-02-11 11:23:10 | 3.77 weeks | 2008-01-24 15:45:51 | 2008-11-01 21:40:02 | 40.3149 weeks | 2008-01-24 15:45:51 | 2008-11-01 21:40:02 |
6 | date of purchase (POSIXct class) | 72 | 8.86 | 2003-02-19 22:01:34 | 232.07 weeks | 1999-11-01 13:42:00 | 49.24 weeks | 1999-06-15 02:46:00 | 2008-07-22 21:44:19 | 475.1129 weeks | 1999-01-19 05:05:00 | 2008-12-19 04:14:10 |
8 | date of purchase (POSIXct class) | 64 | 8.57 | 2004-12-05 01:39:52 | 230.29 weeks | 2008-02-22 08:13:23 | 42.02 weeks | 1999-09-07 08:18:00 | 2008-07-30 23:21:17 | 464.2325 weeks | 1999-01-14 10:39:00 | 2008-12-23 02:41:31 |
Overall | date of purchase (POSIXct class) | 214 | 8.55 | 2003-11-21 01:59:50 | 234.68 weeks | 1999-12-20 21:58:00 | 71.08 weeks | 1999-07-12 06:29:00 | 2008-08-08 04:44:28 | 473.5611 weeks | 1999-01-14 10:39:00 | 2008-12-23 02:41:31 |
make_complete_output(dpctByCylSummaryExample)
number of cylinders | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | date of purchase (POSIXct class) | 75 | 7.41 | 2003-07-18 01:05:46 | 234.79 weeks | 1999-11-04 12:33:00 | 59.78 weeks | 1999-06-29 06:05:00 | 2008-06-13 12:42:47 | 467.4680 weeks | 1999-01-19 10:45:00 | 2008-12-10 14:15:29 |
5 | date of purchase (POSIXct class) | 3 | 25.00 | 2008-05-03 16:56:21 | 22.58 weeks | 2008-02-11 11:23:10 | 3.77 weeks | 2008-01-24 15:45:51 | 2008-11-01 21:40:02 | 40.3149 weeks | 2008-01-24 15:45:51 | 2008-11-01 21:40:02 |
6 | date of purchase (POSIXct class) | 72 | 8.86 | 2003-02-19 22:01:34 | 232.07 weeks | 1999-11-01 13:42:00 | 49.24 weeks | 1999-06-15 02:46:00 | 2008-07-22 21:44:19 | 475.1129 weeks | 1999-01-19 05:05:00 | 2008-12-19 04:14:10 |
8 | date of purchase (POSIXct class) | 64 | 8.57 | 2004-12-05 01:39:52 | 230.29 weeks | 2008-02-22 08:13:23 | 42.02 weeks | 1999-09-07 08:18:00 | 2008-07-30 23:21:17 | 464.2325 weeks | 1999-01-14 10:39:00 | 2008-12-23 02:41:31 |
Overall | date of purchase (POSIXct class) | 214 | 8.55 | 2003-11-21 01:59:50 | 234.68 weeks | 1999-12-20 21:58:00 | 71.08 weeks | 1999-07-12 06:29:00 | 2008-08-08 04:44:28 | 473.5611 weeks | 1999-01-14 10:39:00 | 2008-12-23 02:41:31 |
show(dpctByCylByCommentsSummaryExample)
number of cylinders by some random comments
1 4, .
2 6, .
3 8, .
4 4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
5 6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
6 8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
7 4, Does it also fly?
8 6, Does it also fly?
9 8, Does it also fly?
10 4, Does it come in green?
11 6, Does it come in green?
12 8, Does it come in green?
13 4, I like this car!
14 6, I like this car!
15 8, I like this car!
16 4, Meh.
17 6, Meh.
18 8, Meh.
19 4, Missing
20 6, Missing
21 8, Missing
22 4, This is the worst car ever!
23 6, This is the worst car ever!
24 8, This is the worst car ever!
25 4, want cheese flavoured cars.
26 6, want cheese flavoured cars.
27 8, want cheese flavoured cars.
28 Overall
29 R NA Value
Label N P NA Mean S Dev
1 date of purchase (POSIXct class) 4 20.00 2003-11-26 01:28:09 264.73 weeks
2 date of purchase (POSIXct class) 5 44.44 2002-12-17 07:22:57 270.27 weeks
3 date of purchase (POSIXct class) 11 0.00 2004-04-24 19:25:05 249.42 weeks
4 date of purchase (POSIXct class) 9 0.00 2002-07-15 12:07:25 241.61 weeks
5 date of purchase (POSIXct class) 8 0.00 2005-03-06 05:47:49 242.11 weeks
6 date of purchase (POSIXct class) 4 0.00 2004-02-11 02:10:30 276.28 weeks
7 date of purchase (POSIXct class) 4 20.00 2001-09-24 21:28:30 248.62 weeks
8 date of purchase (POSIXct class) 7 0.00 2002-01-07 00:42:09 233.05 weeks
9 date of purchase (POSIXct class) 4 0.00 2003-12-10 08:59:56 274.38 weeks
10 date of purchase (POSIXct class) 13 13.33 2004-04-26 18:00:18 242.32 weeks
11 date of purchase (POSIXct class) 3 0.00 2002-05-06 17:40:58 282.96 weeks
12 date of purchase (POSIXct class) 5 0.00 2006-07-04 19:28:09 202.85 weeks
13 date of purchase (POSIXct class) 10 0.00 2004-09-06 11:29:02 236.37 weeks
14 date of purchase (POSIXct class) 8 11.11 2001-09-26 15:59:45 221.03 weeks
15 date of purchase (POSIXct class) 4 0.00 2001-10-11 21:23:10 217.30 weeks
16 date of purchase (POSIXct class) 5 16.67 1999-09-07 16:47:00 10.58 weeks
17 date of purchase (POSIXct class) 6 0.00 2005-07-02 01:16:06 239.72 weeks
18 date of purchase (POSIXct class) 6 0.00 2008-06-20 07:15:14 15.40 weeks
19 date of purchase (POSIXct class) 6 0.00 2005-06-18 04:14:08 242.90 weeks
20 date of purchase (POSIXct class) 5 0.00 2004-11-20 04:13:04 261.49 weeks
21 date of purchase (POSIXct class) 10 28.57 2005-09-03 05:52:51 232.45 weeks
22 date of purchase (POSIXct class) 7 0.00 2003-04-25 22:09:50 251.79 weeks
23 date of purchase (POSIXct class) 9 10.00 2002-08-24 05:35:52 231.70 weeks
24 date of purchase (POSIXct class) 5 0.00 2006-10-12 10:56:39 199.59 weeks
25 date of purchase (POSIXct class) 11 0.00 2003-07-08 17:22:47 243.99 weeks
26 date of purchase (POSIXct class) 13 0.00 2002-04-20 13:43:21 220.53 weeks
27 date of purchase (POSIXct class) 7 22.22 2004-08-05 03:35:48 242.19 weeks
28 date of purchase (POSIXct class) 214 8.55 2003-11-21 01:59:50 234.68 weeks
29 date of purchase (POSIXct class) 22 8.33 2003-03-11 06:54:43 237.23 weeks
Med MAD 25th P 75th P
1 2003-11-06 00:13:47 335.21 weeks 1999-05-08 03:24:00 2008-07-25 04:01:02
2 1999-03-12 05:37:00 2.16 weeks 1999-03-05 23:19:00 <NA>
3 2008-01-13 14:49:44 66.19 weeks 1999-03-07 05:25:00 2008-02-26 03:51:50
4 1999-10-27 08:00:00 52.44 weeks 1999-02-21 16:40:00 2008-06-08 19:04:52
5 2008-02-29 11:08:42 60.19 weeks 1999-07-29 02:43:00 2008-06-11 20:05:41
6 2004-03-28 00:37:14 344.49 weeks 1999-03-12 10:49:00 2008-08-08 04:44:28
7 1999-07-02 14:44:30 29.09 weeks 1999-01-25 04:26:00 2008-11-11 01:59:02
8 1999-06-15 04:11:00 20.52 weeks 1999-04-09 00:55:00 1999-09-20 01:32:00
9 2003-11-28 18:09:45 349.78 weeks 1999-05-04 19:30:00 2008-05-19 17:04:31
10 2008-01-30 06:40:31 65.27 weeks 1999-09-11 11:21:00 2008-08-21 12:07:05
11 1999-04-10 20:07:00 9.15 weeks 1999-02-26 14:09:00 1999-04-10 20:07:00
12 2008-02-18 12:34:57 9.89 weeks 1999-07-23 20:34:00 2008-04-05 06:03:33
13 2008-01-15 18:48:46 24.65 weeks 1999-02-03 02:54:00 2008-03-27 14:15:56
14 1999-09-15 13:26:30 40.56 weeks 1999-02-28 02:12:00 2008-04-21 15:55:24
15 1999-11-08 23:10:00 21.40 weeks 1999-05-23 12:06:00 1999-12-11 11:51:00
16 1999-09-08 16:06:00 4.96 weeks 1999-08-16 06:16:00 1999-09-24 05:34:00
17 2008-03-20 18:16:55 37.37 weeks 1999-10-04 16:53:00 2008-04-10 15:49:22
18 2008-06-07 04:14:04 18.68 weeks 2008-03-11 18:07:43 2008-07-30 23:21:17
19 2008-02-16 06:07:01 51.03 weeks 1999-11-09 01:13:00 2008-03-08 08:49:18
20 2008-03-11 20:09:42 44.33 weeks 1999-04-04 20:26:00 2008-09-01 08:38:40
21 2008-05-08 08:56:16 16.38 weeks 2008-01-19 10:45:49 2008-12-23 02:41:31
22 1999-09-09 16:35:00 40.37 weeks 1999-05-18 04:07:00 2008-04-02 22:50:26
23 1999-11-23 09:40:00 33.31 weeks 1999-06-19 03:37:00 2008-08-22 23:14:44
24 2008-06-06 11:58:47 19.12 weeks 1999-12-12 17:15:00 2008-08-31 05:08:21
25 1999-12-19 19:44:00 70.82 weeks 1999-05-29 22:46:00 2008-03-17 01:58:41
26 1999-10-22 23:01:00 29.77 weeks 1999-06-04 09:07:00 2008-01-23 02:49:05
27 2008-02-12 08:03:24 34.18 weeks 1999-11-17 16:08:00 2008-07-22 17:39:40
28 1999-12-20 21:58:00 71.08 weeks 1999-07-12 06:29:00 2008-08-08 04:44:28
29 1999-10-23 07:22:30 46.90 weeks 1999-06-05 15:30:00 2008-06-03 02:59:13
IQR Min Max
1 480.860817 weeks 1999-05-08 03:24:00 2008-07-25 04:01:02
2 NA weeks 1999-03-02 01:18:00 2008-09-16 10:56:27
3 468.276472 weeks 1999-01-21 09:02:00 2008-11-21 02:41:49
4 485.008419 weeks 1999-01-20 00:04:00 2008-11-13 01:54:34
5 462.960584 weeks 1999-04-21 10:44:00 2008-12-19 04:14:10
6 490.957884 weeks 1999-03-12 10:49:00 2008-10-11 21:38:33
7 511.128277 weeks 1999-01-25 04:26:00 2008-11-11 01:59:02
8 23.432242 weeks 1999-02-22 21:00:00 2008-09-26 00:11:30
9 471.842710 weeks 1999-05-04 19:30:00 2008-08-09 06:10:15
10 466.718857 weeks 1999-02-13 09:45:00 2008-12-03 10:17:51
11 6.172421 weeks 1999-02-26 14:09:00 2008-08-09 17:46:55
12 454.056503 weeks 1999-07-23 20:34:00 2008-06-29 10:41:03
13 477.204557 weeks 1999-01-26 06:24:00 2008-06-13 12:42:47
14 477.218591 weeks 1999-01-19 05:05:00 2008-11-05 13:24:43
15 28.861607 weeks 1999-05-23 12:06:00 2008-01-07 00:06:43
16 5.567262 weeks 1999-05-30 06:47:00 1999-12-22 00:12:00
17 444.422259 weeks 1999-05-28 16:38:00 2008-12-15 14:11:55
18 20.173965 weeks 2008-03-05 18:36:33 2008-11-24 17:31:18
19 434.616696 weeks 1999-02-03 20:54:00 2008-12-10 14:15:29
20 491.072685 weeks 1999-04-04 20:26:00 2008-10-07 03:05:02
21 48.380526 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
22 463.254309 weeks 1999-03-03 01:37:00 2008-10-25 00:08:02
23 478.973981 weeks 1999-04-03 22:19:00 2008-09-22 01:07:21
24 454.921959 weeks 1999-12-12 17:15:00 2008-09-04 18:09:48
25 459.161973 weeks 1999-01-19 10:45:00 2008-09-23 15:04:14
26 450.682746 weeks 1999-04-04 00:33:00 2008-10-30 15:10:27
27 452.860284 weeks 1999-02-27 18:31:00 2008-07-22 17:39:40
28 473.561058 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
29 469.354089 weeks 1999-02-12 16:08:00 2008-12-04 06:19:25
data_summary_table(dpctByCylByCommentsSummaryExample)
number of cylinders by some random comments
1 4, .
2 6, .
3 8, .
4 4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
5 6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
6 8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah
7 4, Does it also fly?
8 6, Does it also fly?
9 8, Does it also fly?
10 4, Does it come in green?
11 6, Does it come in green?
12 8, Does it come in green?
13 4, I like this car!
14 6, I like this car!
15 8, I like this car!
16 4, Meh.
17 6, Meh.
18 8, Meh.
19 4, Missing
20 6, Missing
21 8, Missing
22 4, This is the worst car ever!
23 6, This is the worst car ever!
24 8, This is the worst car ever!
25 4, want cheese flavoured cars.
26 6, want cheese flavoured cars.
27 8, want cheese flavoured cars.
28 Overall
29 R NA Value
Label N P NA Mean S Dev
1 date of purchase (POSIXct class) 4 20.00 2003-11-26 01:28:09 264.73 weeks
2 date of purchase (POSIXct class) 5 44.44 2002-12-17 07:22:57 270.27 weeks
3 date of purchase (POSIXct class) 11 0.00 2004-04-24 19:25:05 249.42 weeks
4 date of purchase (POSIXct class) 9 0.00 2002-07-15 12:07:25 241.61 weeks
5 date of purchase (POSIXct class) 8 0.00 2005-03-06 05:47:49 242.11 weeks
6 date of purchase (POSIXct class) 4 0.00 2004-02-11 02:10:30 276.28 weeks
7 date of purchase (POSIXct class) 4 20.00 2001-09-24 21:28:30 248.62 weeks
8 date of purchase (POSIXct class) 7 0.00 2002-01-07 00:42:09 233.05 weeks
9 date of purchase (POSIXct class) 4 0.00 2003-12-10 08:59:56 274.38 weeks
10 date of purchase (POSIXct class) 13 13.33 2004-04-26 18:00:18 242.32 weeks
11 date of purchase (POSIXct class) 3 0.00 2002-05-06 17:40:58 282.96 weeks
12 date of purchase (POSIXct class) 5 0.00 2006-07-04 19:28:09 202.85 weeks
13 date of purchase (POSIXct class) 10 0.00 2004-09-06 11:29:02 236.37 weeks
14 date of purchase (POSIXct class) 8 11.11 2001-09-26 15:59:45 221.03 weeks
15 date of purchase (POSIXct class) 4 0.00 2001-10-11 21:23:10 217.30 weeks
16 date of purchase (POSIXct class) 5 16.67 1999-09-07 16:47:00 10.58 weeks
17 date of purchase (POSIXct class) 6 0.00 2005-07-02 01:16:06 239.72 weeks
18 date of purchase (POSIXct class) 6 0.00 2008-06-20 07:15:14 15.40 weeks
19 date of purchase (POSIXct class) 6 0.00 2005-06-18 04:14:08 242.90 weeks
20 date of purchase (POSIXct class) 5 0.00 2004-11-20 04:13:04 261.49 weeks
21 date of purchase (POSIXct class) 10 28.57 2005-09-03 05:52:51 232.45 weeks
22 date of purchase (POSIXct class) 7 0.00 2003-04-25 22:09:50 251.79 weeks
23 date of purchase (POSIXct class) 9 10.00 2002-08-24 05:35:52 231.70 weeks
24 date of purchase (POSIXct class) 5 0.00 2006-10-12 10:56:39 199.59 weeks
25 date of purchase (POSIXct class) 11 0.00 2003-07-08 17:22:47 243.99 weeks
26 date of purchase (POSIXct class) 13 0.00 2002-04-20 13:43:21 220.53 weeks
27 date of purchase (POSIXct class) 7 22.22 2004-08-05 03:35:48 242.19 weeks
28 date of purchase (POSIXct class) 214 8.55 2003-11-21 01:59:50 234.68 weeks
29 date of purchase (POSIXct class) 22 8.33 2003-03-11 06:54:43 237.23 weeks
Med MAD 25th P 75th P
1 2003-11-06 00:13:47 335.21 weeks 1999-05-08 03:24:00 2008-07-25 04:01:02
2 1999-03-12 05:37:00 2.16 weeks 1999-03-05 23:19:00 <NA>
3 2008-01-13 14:49:44 66.19 weeks 1999-03-07 05:25:00 2008-02-26 03:51:50
4 1999-10-27 08:00:00 52.44 weeks 1999-02-21 16:40:00 2008-06-08 19:04:52
5 2008-02-29 11:08:42 60.19 weeks 1999-07-29 02:43:00 2008-06-11 20:05:41
6 2004-03-28 00:37:14 344.49 weeks 1999-03-12 10:49:00 2008-08-08 04:44:28
7 1999-07-02 14:44:30 29.09 weeks 1999-01-25 04:26:00 2008-11-11 01:59:02
8 1999-06-15 04:11:00 20.52 weeks 1999-04-09 00:55:00 1999-09-20 01:32:00
9 2003-11-28 18:09:45 349.78 weeks 1999-05-04 19:30:00 2008-05-19 17:04:31
10 2008-01-30 06:40:31 65.27 weeks 1999-09-11 11:21:00 2008-08-21 12:07:05
11 1999-04-10 20:07:00 9.15 weeks 1999-02-26 14:09:00 1999-04-10 20:07:00
12 2008-02-18 12:34:57 9.89 weeks 1999-07-23 20:34:00 2008-04-05 06:03:33
13 2008-01-15 18:48:46 24.65 weeks 1999-02-03 02:54:00 2008-03-27 14:15:56
14 1999-09-15 13:26:30 40.56 weeks 1999-02-28 02:12:00 2008-04-21 15:55:24
15 1999-11-08 23:10:00 21.40 weeks 1999-05-23 12:06:00 1999-12-11 11:51:00
16 1999-09-08 16:06:00 4.96 weeks 1999-08-16 06:16:00 1999-09-24 05:34:00
17 2008-03-20 18:16:55 37.37 weeks 1999-10-04 16:53:00 2008-04-10 15:49:22
18 2008-06-07 04:14:04 18.68 weeks 2008-03-11 18:07:43 2008-07-30 23:21:17
19 2008-02-16 06:07:01 51.03 weeks 1999-11-09 01:13:00 2008-03-08 08:49:18
20 2008-03-11 20:09:42 44.33 weeks 1999-04-04 20:26:00 2008-09-01 08:38:40
21 2008-05-08 08:56:16 16.38 weeks 2008-01-19 10:45:49 2008-12-23 02:41:31
22 1999-09-09 16:35:00 40.37 weeks 1999-05-18 04:07:00 2008-04-02 22:50:26
23 1999-11-23 09:40:00 33.31 weeks 1999-06-19 03:37:00 2008-08-22 23:14:44
24 2008-06-06 11:58:47 19.12 weeks 1999-12-12 17:15:00 2008-08-31 05:08:21
25 1999-12-19 19:44:00 70.82 weeks 1999-05-29 22:46:00 2008-03-17 01:58:41
26 1999-10-22 23:01:00 29.77 weeks 1999-06-04 09:07:00 2008-01-23 02:49:05
27 2008-02-12 08:03:24 34.18 weeks 1999-11-17 16:08:00 2008-07-22 17:39:40
28 1999-12-20 21:58:00 71.08 weeks 1999-07-12 06:29:00 2008-08-08 04:44:28
29 1999-10-23 07:22:30 46.90 weeks 1999-06-05 15:30:00 2008-06-03 02:59:13
IQR Min Max
1 480.860817 weeks 1999-05-08 03:24:00 2008-07-25 04:01:02
2 NA weeks 1999-03-02 01:18:00 2008-09-16 10:56:27
3 468.276472 weeks 1999-01-21 09:02:00 2008-11-21 02:41:49
4 485.008419 weeks 1999-01-20 00:04:00 2008-11-13 01:54:34
5 462.960584 weeks 1999-04-21 10:44:00 2008-12-19 04:14:10
6 490.957884 weeks 1999-03-12 10:49:00 2008-10-11 21:38:33
7 511.128277 weeks 1999-01-25 04:26:00 2008-11-11 01:59:02
8 23.432242 weeks 1999-02-22 21:00:00 2008-09-26 00:11:30
9 471.842710 weeks 1999-05-04 19:30:00 2008-08-09 06:10:15
10 466.718857 weeks 1999-02-13 09:45:00 2008-12-03 10:17:51
11 6.172421 weeks 1999-02-26 14:09:00 2008-08-09 17:46:55
12 454.056503 weeks 1999-07-23 20:34:00 2008-06-29 10:41:03
13 477.204557 weeks 1999-01-26 06:24:00 2008-06-13 12:42:47
14 477.218591 weeks 1999-01-19 05:05:00 2008-11-05 13:24:43
15 28.861607 weeks 1999-05-23 12:06:00 2008-01-07 00:06:43
16 5.567262 weeks 1999-05-30 06:47:00 1999-12-22 00:12:00
17 444.422259 weeks 1999-05-28 16:38:00 2008-12-15 14:11:55
18 20.173965 weeks 2008-03-05 18:36:33 2008-11-24 17:31:18
19 434.616696 weeks 1999-02-03 20:54:00 2008-12-10 14:15:29
20 491.072685 weeks 1999-04-04 20:26:00 2008-10-07 03:05:02
21 48.380526 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
22 463.254309 weeks 1999-03-03 01:37:00 2008-10-25 00:08:02
23 478.973981 weeks 1999-04-03 22:19:00 2008-09-22 01:07:21
24 454.921959 weeks 1999-12-12 17:15:00 2008-09-04 18:09:48
25 459.161973 weeks 1999-01-19 10:45:00 2008-09-23 15:04:14
26 450.682746 weeks 1999-04-04 00:33:00 2008-10-30 15:10:27
27 452.860284 weeks 1999-02-27 18:31:00 2008-07-22 17:39:40
28 473.561058 weeks 1999-01-14 10:39:00 2008-12-23 02:41:31
29 469.354089 weeks 1999-02-12 16:08:00 2008-12-04 06:19:25
data_summary_plot(dpctByCylByCommentsSummaryExample)
make_kable_output(dpctByCylByCommentsSummaryExample)
number of cylinders by some random comments | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4, . | date of purchase (POSIXct class) | 4 | 20.00 | 2003-11-26 01:28:09 | 264.73 weeks | 2003-11-06 00:13:47 | 335.21 weeks | 1999-05-08 03:24:00 | 2008-07-25 04:01:02 | 480.860817 weeks | 1999-05-08 03:24:00 | 2008-07-25 04:01:02 |
6, . | date of purchase (POSIXct class) | 5 | 44.44 | 2002-12-17 07:22:57 | 270.27 weeks | 1999-03-12 05:37:00 | 2.16 weeks | 1999-03-05 23:19:00 | NA | NA weeks | 1999-03-02 01:18:00 | 2008-09-16 10:56:27 |
8, . | date of purchase (POSIXct class) | 11 | 0.00 | 2004-04-24 19:25:05 | 249.42 weeks | 2008-01-13 14:49:44 | 66.19 weeks | 1999-03-07 05:25:00 | 2008-02-26 03:51:50 | 468.276472 weeks | 1999-01-21 09:02:00 | 2008-11-21 02:41:49 |
4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (POSIXct class) | 9 | 0.00 | 2002-07-15 12:07:25 | 241.61 weeks | 1999-10-27 08:00:00 | 52.44 weeks | 1999-02-21 16:40:00 | 2008-06-08 19:04:52 | 485.008419 weeks | 1999-01-20 00:04:00 | 2008-11-13 01:54:34 |
6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (POSIXct class) | 8 | 0.00 | 2005-03-06 05:47:49 | 242.11 weeks | 2008-02-29 11:08:42 | 60.19 weeks | 1999-07-29 02:43:00 | 2008-06-11 20:05:41 | 462.960584 weeks | 1999-04-21 10:44:00 | 2008-12-19 04:14:10 |
8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (POSIXct class) | 4 | 0.00 | 2004-02-11 02:10:30 | 276.28 weeks | 2004-03-28 00:37:14 | 344.49 weeks | 1999-03-12 10:49:00 | 2008-08-08 04:44:28 | 490.957884 weeks | 1999-03-12 10:49:00 | 2008-10-11 21:38:33 |
4, Does it also fly? | date of purchase (POSIXct class) | 4 | 20.00 | 2001-09-24 21:28:30 | 248.62 weeks | 1999-07-02 14:44:30 | 29.09 weeks | 1999-01-25 04:26:00 | 2008-11-11 01:59:02 | 511.128277 weeks | 1999-01-25 04:26:00 | 2008-11-11 01:59:02 |
6, Does it also fly? | date of purchase (POSIXct class) | 7 | 0.00 | 2002-01-07 00:42:09 | 233.05 weeks | 1999-06-15 04:11:00 | 20.52 weeks | 1999-04-09 00:55:00 | 1999-09-20 01:32:00 | 23.432242 weeks | 1999-02-22 21:00:00 | 2008-09-26 00:11:30 |
8, Does it also fly? | date of purchase (POSIXct class) | 4 | 0.00 | 2003-12-10 08:59:56 | 274.38 weeks | 2003-11-28 18:09:45 | 349.78 weeks | 1999-05-04 19:30:00 | 2008-05-19 17:04:31 | 471.842710 weeks | 1999-05-04 19:30:00 | 2008-08-09 06:10:15 |
4, Does it come in green? | date of purchase (POSIXct class) | 13 | 13.33 | 2004-04-26 18:00:18 | 242.32 weeks | 2008-01-30 06:40:31 | 65.27 weeks | 1999-09-11 11:21:00 | 2008-08-21 12:07:05 | 466.718858 weeks | 1999-02-13 09:45:00 | 2008-12-03 10:17:51 |
6, Does it come in green? | date of purchase (POSIXct class) | 3 | 0.00 | 2002-05-06 17:40:58 | 282.96 weeks | 1999-04-10 20:07:00 | 9.15 weeks | 1999-02-26 14:09:00 | 1999-04-10 20:07:00 | 6.172421 weeks | 1999-02-26 14:09:00 | 2008-08-09 17:46:55 |
8, Does it come in green? | date of purchase (POSIXct class) | 5 | 0.00 | 2006-07-04 19:28:09 | 202.85 weeks | 2008-02-18 12:34:57 | 9.89 weeks | 1999-07-23 20:34:00 | 2008-04-05 06:03:33 | 454.056503 weeks | 1999-07-23 20:34:00 | 2008-06-29 10:41:03 |
4, I like this car! | date of purchase (POSIXct class) | 10 | 0.00 | 2004-09-06 11:29:02 | 236.37 weeks | 2008-01-15 18:48:46 | 24.65 weeks | 1999-02-03 02:54:00 | 2008-03-27 14:15:56 | 477.204557 weeks | 1999-01-26 06:24:00 | 2008-06-13 12:42:47 |
6, I like this car! | date of purchase (POSIXct class) | 8 | 11.11 | 2001-09-26 15:59:45 | 221.03 weeks | 1999-09-15 13:26:30 | 40.56 weeks | 1999-02-28 02:12:00 | 2008-04-21 15:55:24 | 477.218591 weeks | 1999-01-19 05:05:00 | 2008-11-05 13:24:43 |
8, I like this car! | date of purchase (POSIXct class) | 4 | 0.00 | 2001-10-11 21:23:10 | 217.30 weeks | 1999-11-08 23:10:00 | 21.40 weeks | 1999-05-23 12:06:00 | 1999-12-11 11:51:00 | 28.861607 weeks | 1999-05-23 12:06:00 | 2008-01-07 00:06:43 |
4, Meh. | date of purchase (POSIXct class) | 5 | 16.67 | 1999-09-07 16:47:00 | 10.58 weeks | 1999-09-08 16:06:00 | 4.96 weeks | 1999-08-16 06:16:00 | 1999-09-24 05:34:00 | 5.567262 weeks | 1999-05-30 06:47:00 | 1999-12-22 00:12:00 |
6, Meh. | date of purchase (POSIXct class) | 6 | 0.00 | 2005-07-02 01:16:06 | 239.72 weeks | 2008-03-20 18:16:55 | 37.37 weeks | 1999-10-04 16:53:00 | 2008-04-10 15:49:22 | 444.422259 weeks | 1999-05-28 16:38:00 | 2008-12-15 14:11:55 |
8, Meh. | date of purchase (POSIXct class) | 6 | 0.00 | 2008-06-20 07:15:14 | 15.40 weeks | 2008-06-07 04:14:04 | 18.68 weeks | 2008-03-11 18:07:43 | 2008-07-30 23:21:17 | 20.173965 weeks | 2008-03-05 18:36:33 | 2008-11-24 17:31:18 |
4, Missing | date of purchase (POSIXct class) | 6 | 0.00 | 2005-06-18 04:14:08 | 242.90 weeks | 2008-02-16 06:07:01 | 51.03 weeks | 1999-11-09 01:13:00 | 2008-03-08 08:49:18 | 434.616696 weeks | 1999-02-03 20:54:00 | 2008-12-10 14:15:29 |
6, Missing | date of purchase (POSIXct class) | 5 | 0.00 | 2004-11-20 04:13:04 | 261.49 weeks | 2008-03-11 20:09:42 | 44.33 weeks | 1999-04-04 20:26:00 | 2008-09-01 08:38:40 | 491.072685 weeks | 1999-04-04 20:26:00 | 2008-10-07 03:05:02 |
8, Missing | date of purchase (POSIXct class) | 10 | 28.57 | 2005-09-03 05:52:51 | 232.45 weeks | 2008-05-08 08:56:16 | 16.38 weeks | 2008-01-19 10:45:49 | 2008-12-23 02:41:31 | 48.380526 weeks | 1999-01-14 10:39:00 | 2008-12-23 02:41:31 |
4, This is the worst car ever! | date of purchase (POSIXct class) | 7 | 0.00 | 2003-04-25 22:09:50 | 251.79 weeks | 1999-09-09 16:35:00 | 40.37 weeks | 1999-05-18 04:07:00 | 2008-04-02 22:50:26 | 463.254309 weeks | 1999-03-03 01:37:00 | 2008-10-25 00:08:02 |
6, This is the worst car ever! | date of purchase (POSIXct class) | 9 | 10.00 | 2002-08-24 05:35:52 | 231.70 weeks | 1999-11-23 09:40:00 | 33.31 weeks | 1999-06-19 03:37:00 | 2008-08-22 23:14:44 | 478.973981 weeks | 1999-04-03 22:19:00 | 2008-09-22 01:07:21 |
8, This is the worst car ever! | date of purchase (POSIXct class) | 5 | 0.00 | 2006-10-12 10:56:39 | 199.59 weeks | 2008-06-06 11:58:47 | 19.12 weeks | 1999-12-12 17:15:00 | 2008-08-31 05:08:21 | 454.921959 weeks | 1999-12-12 17:15:00 | 2008-09-04 18:09:48 |
4, want cheese flavoured cars. | date of purchase (POSIXct class) | 11 | 0.00 | 2003-07-08 17:22:47 | 243.99 weeks | 1999-12-19 19:44:00 | 70.82 weeks | 1999-05-29 22:46:00 | 2008-03-17 01:58:41 | 459.161973 weeks | 1999-01-19 10:45:00 | 2008-09-23 15:04:14 |
6, want cheese flavoured cars. | date of purchase (POSIXct class) | 13 | 0.00 | 2002-04-20 13:43:21 | 220.53 weeks | 1999-10-22 23:01:00 | 29.77 weeks | 1999-06-04 09:07:00 | 2008-01-23 02:49:05 | 450.682746 weeks | 1999-04-04 00:33:00 | 2008-10-30 15:10:27 |
8, want cheese flavoured cars. | date of purchase (POSIXct class) | 7 | 22.22 | 2004-08-05 03:35:48 | 242.19 weeks | 2008-02-12 08:03:24 | 34.18 weeks | 1999-11-17 16:08:00 | 2008-07-22 17:39:40 | 452.860284 weeks | 1999-02-27 18:31:00 | 2008-07-22 17:39:40 |
Overall | date of purchase (POSIXct class) | 214 | 8.55 | 2003-11-21 01:59:50 | 234.68 weeks | 1999-12-20 21:58:00 | 71.08 weeks | 1999-07-12 06:29:00 | 2008-08-08 04:44:28 | 473.561058 weeks | 1999-01-14 10:39:00 | 2008-12-23 02:41:31 |
R NA Value | date of purchase (POSIXct class) | 22 | 8.33 | 2003-03-11 06:54:43 | 237.23 weeks | 1999-10-23 07:22:30 | 46.90 weeks | 1999-06-05 15:30:00 | 2008-06-03 02:59:13 | 469.354089 weeks | 1999-02-12 16:08:00 | 2008-12-04 06:19:25 |
make_complete_output(dpctByCylByCommentsSummaryExample)
number of cylinders by some random comments | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4, . | date of purchase (POSIXct class) | 4 | 20.00 | 2003-11-26 01:28:09 | 264.73 weeks | 2003-11-06 00:13:47 | 335.21 weeks | 1999-05-08 03:24:00 | 2008-07-25 04:01:02 | 480.860817 weeks | 1999-05-08 03:24:00 | 2008-07-25 04:01:02 |
6, . | date of purchase (POSIXct class) | 5 | 44.44 | 2002-12-17 07:22:57 | 270.27 weeks | 1999-03-12 05:37:00 | 2.16 weeks | 1999-03-05 23:19:00 | NA | NA weeks | 1999-03-02 01:18:00 | 2008-09-16 10:56:27 |
8, . | date of purchase (POSIXct class) | 11 | 0.00 | 2004-04-24 19:25:05 | 249.42 weeks | 2008-01-13 14:49:44 | 66.19 weeks | 1999-03-07 05:25:00 | 2008-02-26 03:51:50 | 468.276472 weeks | 1999-01-21 09:02:00 | 2008-11-21 02:41:49 |
4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (POSIXct class) | 9 | 0.00 | 2002-07-15 12:07:25 | 241.61 weeks | 1999-10-27 08:00:00 | 52.44 weeks | 1999-02-21 16:40:00 | 2008-06-08 19:04:52 | 485.008419 weeks | 1999-01-20 00:04:00 | 2008-11-13 01:54:34 |
6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (POSIXct class) | 8 | 0.00 | 2005-03-06 05:47:49 | 242.11 weeks | 2008-02-29 11:08:42 | 60.19 weeks | 1999-07-29 02:43:00 | 2008-06-11 20:05:41 | 462.960584 weeks | 1999-04-21 10:44:00 | 2008-12-19 04:14:10 |
8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (POSIXct class) | 4 | 0.00 | 2004-02-11 02:10:30 | 276.28 weeks | 2004-03-28 00:37:14 | 344.49 weeks | 1999-03-12 10:49:00 | 2008-08-08 04:44:28 | 490.957884 weeks | 1999-03-12 10:49:00 | 2008-10-11 21:38:33 |
4, Does it also fly? | date of purchase (POSIXct class) | 4 | 20.00 | 2001-09-24 21:28:30 | 248.62 weeks | 1999-07-02 14:44:30 | 29.09 weeks | 1999-01-25 04:26:00 | 2008-11-11 01:59:02 | 511.128277 weeks | 1999-01-25 04:26:00 | 2008-11-11 01:59:02 |
6, Does it also fly? | date of purchase (POSIXct class) | 7 | 0.00 | 2002-01-07 00:42:09 | 233.05 weeks | 1999-06-15 04:11:00 | 20.52 weeks | 1999-04-09 00:55:00 | 1999-09-20 01:32:00 | 23.432242 weeks | 1999-02-22 21:00:00 | 2008-09-26 00:11:30 |
8, Does it also fly? | date of purchase (POSIXct class) | 4 | 0.00 | 2003-12-10 08:59:56 | 274.38 weeks | 2003-11-28 18:09:45 | 349.78 weeks | 1999-05-04 19:30:00 | 2008-05-19 17:04:31 | 471.842710 weeks | 1999-05-04 19:30:00 | 2008-08-09 06:10:15 |
4, Does it come in green? | date of purchase (POSIXct class) | 13 | 13.33 | 2004-04-26 18:00:18 | 242.32 weeks | 2008-01-30 06:40:31 | 65.27 weeks | 1999-09-11 11:21:00 | 2008-08-21 12:07:05 | 466.718858 weeks | 1999-02-13 09:45:00 | 2008-12-03 10:17:51 |
6, Does it come in green? | date of purchase (POSIXct class) | 3 | 0.00 | 2002-05-06 17:40:58 | 282.96 weeks | 1999-04-10 20:07:00 | 9.15 weeks | 1999-02-26 14:09:00 | 1999-04-10 20:07:00 | 6.172421 weeks | 1999-02-26 14:09:00 | 2008-08-09 17:46:55 |
8, Does it come in green? | date of purchase (POSIXct class) | 5 | 0.00 | 2006-07-04 19:28:09 | 202.85 weeks | 2008-02-18 12:34:57 | 9.89 weeks | 1999-07-23 20:34:00 | 2008-04-05 06:03:33 | 454.056503 weeks | 1999-07-23 20:34:00 | 2008-06-29 10:41:03 |
4, I like this car! | date of purchase (POSIXct class) | 10 | 0.00 | 2004-09-06 11:29:02 | 236.37 weeks | 2008-01-15 18:48:46 | 24.65 weeks | 1999-02-03 02:54:00 | 2008-03-27 14:15:56 | 477.204557 weeks | 1999-01-26 06:24:00 | 2008-06-13 12:42:47 |
6, I like this car! | date of purchase (POSIXct class) | 8 | 11.11 | 2001-09-26 15:59:45 | 221.03 weeks | 1999-09-15 13:26:30 | 40.56 weeks | 1999-02-28 02:12:00 | 2008-04-21 15:55:24 | 477.218591 weeks | 1999-01-19 05:05:00 | 2008-11-05 13:24:43 |
8, I like this car! | date of purchase (POSIXct class) | 4 | 0.00 | 2001-10-11 21:23:10 | 217.30 weeks | 1999-11-08 23:10:00 | 21.40 weeks | 1999-05-23 12:06:00 | 1999-12-11 11:51:00 | 28.861607 weeks | 1999-05-23 12:06:00 | 2008-01-07 00:06:43 |
4, Meh. | date of purchase (POSIXct class) | 5 | 16.67 | 1999-09-07 16:47:00 | 10.58 weeks | 1999-09-08 16:06:00 | 4.96 weeks | 1999-08-16 06:16:00 | 1999-09-24 05:34:00 | 5.567262 weeks | 1999-05-30 06:47:00 | 1999-12-22 00:12:00 |
6, Meh. | date of purchase (POSIXct class) | 6 | 0.00 | 2005-07-02 01:16:06 | 239.72 weeks | 2008-03-20 18:16:55 | 37.37 weeks | 1999-10-04 16:53:00 | 2008-04-10 15:49:22 | 444.422259 weeks | 1999-05-28 16:38:00 | 2008-12-15 14:11:55 |
8, Meh. | date of purchase (POSIXct class) | 6 | 0.00 | 2008-06-20 07:15:14 | 15.40 weeks | 2008-06-07 04:14:04 | 18.68 weeks | 2008-03-11 18:07:43 | 2008-07-30 23:21:17 | 20.173965 weeks | 2008-03-05 18:36:33 | 2008-11-24 17:31:18 |
4, Missing | date of purchase (POSIXct class) | 6 | 0.00 | 2005-06-18 04:14:08 | 242.90 weeks | 2008-02-16 06:07:01 | 51.03 weeks | 1999-11-09 01:13:00 | 2008-03-08 08:49:18 | 434.616696 weeks | 1999-02-03 20:54:00 | 2008-12-10 14:15:29 |
6, Missing | date of purchase (POSIXct class) | 5 | 0.00 | 2004-11-20 04:13:04 | 261.49 weeks | 2008-03-11 20:09:42 | 44.33 weeks | 1999-04-04 20:26:00 | 2008-09-01 08:38:40 | 491.072685 weeks | 1999-04-04 20:26:00 | 2008-10-07 03:05:02 |
8, Missing | date of purchase (POSIXct class) | 10 | 28.57 | 2005-09-03 05:52:51 | 232.45 weeks | 2008-05-08 08:56:16 | 16.38 weeks | 2008-01-19 10:45:49 | 2008-12-23 02:41:31 | 48.380526 weeks | 1999-01-14 10:39:00 | 2008-12-23 02:41:31 |
4, This is the worst car ever! | date of purchase (POSIXct class) | 7 | 0.00 | 2003-04-25 22:09:50 | 251.79 weeks | 1999-09-09 16:35:00 | 40.37 weeks | 1999-05-18 04:07:00 | 2008-04-02 22:50:26 | 463.254309 weeks | 1999-03-03 01:37:00 | 2008-10-25 00:08:02 |
6, This is the worst car ever! | date of purchase (POSIXct class) | 9 | 10.00 | 2002-08-24 05:35:52 | 231.70 weeks | 1999-11-23 09:40:00 | 33.31 weeks | 1999-06-19 03:37:00 | 2008-08-22 23:14:44 | 478.973981 weeks | 1999-04-03 22:19:00 | 2008-09-22 01:07:21 |
8, This is the worst car ever! | date of purchase (POSIXct class) | 5 | 0.00 | 2006-10-12 10:56:39 | 199.59 weeks | 2008-06-06 11:58:47 | 19.12 weeks | 1999-12-12 17:15:00 | 2008-08-31 05:08:21 | 454.921959 weeks | 1999-12-12 17:15:00 | 2008-09-04 18:09:48 |
4, want cheese flavoured cars. | date of purchase (POSIXct class) | 11 | 0.00 | 2003-07-08 17:22:47 | 243.99 weeks | 1999-12-19 19:44:00 | 70.82 weeks | 1999-05-29 22:46:00 | 2008-03-17 01:58:41 | 459.161973 weeks | 1999-01-19 10:45:00 | 2008-09-23 15:04:14 |
6, want cheese flavoured cars. | date of purchase (POSIXct class) | 13 | 0.00 | 2002-04-20 13:43:21 | 220.53 weeks | 1999-10-22 23:01:00 | 29.77 weeks | 1999-06-04 09:07:00 | 2008-01-23 02:49:05 | 450.682746 weeks | 1999-04-04 00:33:00 | 2008-10-30 15:10:27 |
8, want cheese flavoured cars. | date of purchase (POSIXct class) | 7 | 22.22 | 2004-08-05 03:35:48 | 242.19 weeks | 2008-02-12 08:03:24 | 34.18 weeks | 1999-11-17 16:08:00 | 2008-07-22 17:39:40 | 452.860284 weeks | 1999-02-27 18:31:00 | 2008-07-22 17:39:40 |
Overall | date of purchase (POSIXct class) | 214 | 8.55 | 2003-11-21 01:59:50 | 234.68 weeks | 1999-12-20 21:58:00 | 71.08 weeks | 1999-07-12 06:29:00 | 2008-08-08 04:44:28 | 473.561058 weeks | 1999-01-14 10:39:00 | 2008-12-23 02:41:31 |
R NA Value | date of purchase (POSIXct class) | 22 | 8.33 | 2003-03-11 06:54:43 | 237.23 weeks | 1999-10-23 07:22:30 | 46.90 weeks | 1999-06-05 15:30:00 | 2008-06-03 02:59:13 | 469.354089 weeks | 1999-02-12 16:08:00 | 2008-12-04 06:19:25 |
show(rdifftimeSummaryExample)
1
Label
1 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
N P NA Mean S Dev Med MAD 25th P 75th P
1 184 21.37 9.76 weeks 5.07 weeks 9.6 weeks 5.12 weeks 6.11 weeks 13.05 weeks
IQR Min Max
1 6.79 weeks 0 weeks 23.49 weeks
data_summary_table(rdifftimeSummaryExample)
1
Label
1 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
N P NA Mean S Dev Med MAD 25th P 75th P
1 184 21.37 9.76 weeks 5.07 weeks 9.6 weeks 5.12 weeks 6.11 weeks 13.05 weeks
IQR Min Max
1 6.79 weeks 0 weeks 23.49 weeks
data_summary_plot(rdifftimeSummaryExample)
make_kable_output(rdifftimeSummaryExample)
Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 184 | 21.37 | 9.76 weeks | 5.07 weeks | 9.6 weeks | 5.12 weeks | 6.11 weeks | 13.05 weeks | 6.79 weeks | 0 weeks | 23.49 weeks |
make_complete_output(rdifftimeSummaryExample)
Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 184 | 21.37 | 9.76 weeks | 5.07 weeks | 9.6 weeks | 5.12 weeks | 6.11 weeks | 13.05 weeks | 6.79 weeks | 0 weeks | 23.49 weeks |
show(rdifftimeByDrvSummaryExample)
drive type
1 front-wheel drive
2 rear wheel drive
3 4wd
4 Overall
Label
1 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
2 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
3 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
4 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
N P NA Mean S Dev Med MAD 25th P
1 86 18.87 10.57 weeks 5.24 weeks 10.79 weeks 4.80 weeks 6.59 weeks
2 19 24.00 8.43 weeks 5.17 weeks 8.57 weeks 5.74 weeks 4.70 weeks
3 79 23.30 9.19 weeks 4.77 weeks 9.02 weeks 4.77 weeks 6.11 weeks
4 184 21.37 9.76 weeks 5.07 weeks 9.60 weeks 5.12 weeks 6.11 weeks
75th P IQR Min Max
1 13.57 weeks 6.87 weeks 0 weeks 23.49 weeks
2 12.72 weeks 7.27 weeks 0 weeks 19.07 weeks
3 12.58 weeks 6.15 weeks 0 weeks 21.71 weeks
4 13.05 weeks 6.79 weeks 0 weeks 23.49 weeks
data_summary_table(rdifftimeByDrvSummaryExample)
drive type
1 front-wheel drive
2 rear wheel drive
3 4wd
4 Overall
Label
1 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
2 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
3 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
4 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
N P NA Mean S Dev Med MAD 25th P
1 86 18.87 10.57 weeks 5.24 weeks 10.79 weeks 4.80 weeks 6.59 weeks
2 19 24.00 8.43 weeks 5.17 weeks 8.57 weeks 5.74 weeks 4.70 weeks
3 79 23.30 9.19 weeks 4.77 weeks 9.02 weeks 4.77 weeks 6.11 weeks
4 184 21.37 9.76 weeks 5.07 weeks 9.60 weeks 5.12 weeks 6.11 weeks
75th P IQR Min Max
1 13.57 weeks 6.87 weeks 0 weeks 23.49 weeks
2 12.72 weeks 7.27 weeks 0 weeks 19.07 weeks
3 12.58 weeks 6.15 weeks 0 weeks 21.71 weeks
4 13.05 weeks 6.79 weeks 0 weeks 23.49 weeks
data_summary_plot(rdifftimeByDrvSummaryExample)
make_kable_output(rdifftimeByDrvSummaryExample)
drive type | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
front-wheel drive | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 86 | 18.87 | 10.57 weeks | 5.24 weeks | 10.79 weeks | 4.80 weeks | 6.59 weeks | 13.57 weeks | 6.87 weeks | 0 weeks | 23.49 weeks |
rear wheel drive | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 19 | 24.00 | 8.43 weeks | 5.17 weeks | 8.57 weeks | 5.74 weeks | 4.70 weeks | 12.72 weeks | 7.27 weeks | 0 weeks | 19.07 weeks |
4wd | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 79 | 23.30 | 9.19 weeks | 4.77 weeks | 9.02 weeks | 4.77 weeks | 6.11 weeks | 12.58 weeks | 6.15 weeks | 0 weeks | 21.71 weeks |
Overall | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 184 | 21.37 | 9.76 weeks | 5.07 weeks | 9.60 weeks | 5.12 weeks | 6.11 weeks | 13.05 weeks | 6.79 weeks | 0 weeks | 23.49 weeks |
make_complete_output(rdifftimeByDrvSummaryExample)
drive type | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
front-wheel drive | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 86 | 18.87 | 10.57 weeks | 5.24 weeks | 10.79 weeks | 4.80 weeks | 6.59 weeks | 13.57 weeks | 6.87 weeks | 0 weeks | 23.49 weeks |
rear wheel drive | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 19 | 24.00 | 8.43 weeks | 5.17 weeks | 8.57 weeks | 5.74 weeks | 4.70 weeks | 12.72 weeks | 7.27 weeks | 0 weeks | 19.07 weeks |
4wd | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 79 | 23.30 | 9.19 weeks | 4.77 weeks | 9.02 weeks | 4.77 weeks | 6.11 weeks | 12.58 weeks | 6.15 weeks | 0 weeks | 21.71 weeks |
Overall | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 184 | 21.37 | 9.76 weeks | 5.07 weeks | 9.60 weeks | 5.12 weeks | 6.11 weeks | 13.05 weeks | 6.79 weeks | 0 weeks | 23.49 weeks |
show(rdifftimeByDrvBypartySummaryExample)
drive type by some random political parties
1 front-wheel drive, republican
2 rear wheel drive, republican
3 4wd, republican
4 front-wheel drive, democrat
5 rear wheel drive, democrat
6 4wd, democrat
7 front-wheel drive, independent
8 rear wheel drive, independent
9 4wd, independent
10 Overall
11 R NA Value
Label
1 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
2 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
3 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
4 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
5 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
6 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
7 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
8 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
9 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
10 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
11 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
N P NA Mean S Dev Med MAD 25th P
1 18 30.77 8.95 weeks 6.26 weeks 9.97 weeks 5.64 weeks 4.95 weeks
2 4 0.00 8.75 weeks 4.34 weeks 8.31 weeks 4.84 weeks 4.96 weeks
3 23 11.54 10.07 weeks 6.02 weeks 11.25 weeks 6.73 weeks 4.81 weeks
4 17 5.56 11.37 weeks 4.11 weeks 12.03 weeks 4.84 weeks 7.55 weeks
5 5 16.67 8.26 weeks 3.99 weeks 9.35 weeks 5.25 weeks 4.70 weeks
6 30 18.92 8.31 weeks 4.50 weeks 7.60 weeks 5.60 weeks 6.41 weeks
7 26 18.75 10.75 weeks 4.96 weeks 10.31 weeks 4.84 weeks 5.99 weeks
8 6 14.29 8.80 weeks 5.07 weeks 8.18 weeks 5.40 weeks 5.44 weeks
9 15 34.78 9.86 weeks 4.04 weeks 9.58 weeks 5.87 weeks 5.61 weeks
10 184 21.37 9.76 weeks 5.07 weeks 9.60 weeks 5.12 weeks 6.11 weeks
11 40 27.27 10.08 weeks 5.38 weeks 10.06 weeks 4.12 weeks 6.76 weeks
75th P IQR Min Max
1 11.98 weeks 6.63 weeks 0.00 weeks 23.49 weeks
2 11.48 weeks 6.87 weeks 4.96 weeks 13.41 weeks
3 15.45 weeks 9.23 weeks 0.00 weeks 21.71 weeks
4 13.88 weeks 6.32 weeks 5.05 weeks 18.28 weeks
5 10.78 weeks 6.08 weeks 3.57 weeks 12.89 weeks
6 11.90 weeks 5.46 weeks 0.00 weeks 16.25 weeks
7 13.57 weeks 6.80 weeks 2.95 weeks 21.65 weeks
8 12.72 weeks 5.66 weeks 2.04 weeks 16.22 weeks
9 13.65 weeks 6.94 weeks 4.33 weeks 15.38 weeks
10 13.05 weeks 6.79 weeks 0.00 weeks 23.49 weeks
11 12.27 weeks 5.46 weeks 0.00 weeks 22.98 weeks
data_summary_table(rdifftimeByDrvBypartySummaryExample)
drive type by some random political parties
1 front-wheel drive, republican
2 rear wheel drive, republican
3 4wd, republican
4 front-wheel drive, democrat
5 rear wheel drive, democrat
6 4wd, democrat
7 front-wheel drive, independent
8 rear wheel drive, independent
9 4wd, independent
10 Overall
11 R NA Value
Label
1 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
2 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
3 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
4 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
5 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
6 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
7 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
8 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
9 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
10 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
11 some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks
N P NA Mean S Dev Med MAD 25th P
1 18 30.77 8.95 weeks 6.26 weeks 9.97 weeks 5.64 weeks 4.95 weeks
2 4 0.00 8.75 weeks 4.34 weeks 8.31 weeks 4.84 weeks 4.96 weeks
3 23 11.54 10.07 weeks 6.02 weeks 11.25 weeks 6.73 weeks 4.81 weeks
4 17 5.56 11.37 weeks 4.11 weeks 12.03 weeks 4.84 weeks 7.55 weeks
5 5 16.67 8.26 weeks 3.99 weeks 9.35 weeks 5.25 weeks 4.70 weeks
6 30 18.92 8.31 weeks 4.50 weeks 7.60 weeks 5.60 weeks 6.41 weeks
7 26 18.75 10.75 weeks 4.96 weeks 10.31 weeks 4.84 weeks 5.99 weeks
8 6 14.29 8.80 weeks 5.07 weeks 8.18 weeks 5.40 weeks 5.44 weeks
9 15 34.78 9.86 weeks 4.04 weeks 9.58 weeks 5.87 weeks 5.61 weeks
10 184 21.37 9.76 weeks 5.07 weeks 9.60 weeks 5.12 weeks 6.11 weeks
11 40 27.27 10.08 weeks 5.38 weeks 10.06 weeks 4.12 weeks 6.76 weeks
75th P IQR Min Max
1 11.98 weeks 6.63 weeks 0.00 weeks 23.49 weeks
2 11.48 weeks 6.87 weeks 4.96 weeks 13.41 weeks
3 15.45 weeks 9.23 weeks 0.00 weeks 21.71 weeks
4 13.88 weeks 6.32 weeks 5.05 weeks 18.28 weeks
5 10.78 weeks 6.08 weeks 3.57 weeks 12.89 weeks
6 11.90 weeks 5.46 weeks 0.00 weeks 16.25 weeks
7 13.57 weeks 6.80 weeks 2.95 weeks 21.65 weeks
8 12.72 weeks 5.66 weeks 2.04 weeks 16.22 weeks
9 13.65 weeks 6.94 weeks 4.33 weeks 15.38 weeks
10 13.05 weeks 6.79 weeks 0.00 weeks 23.49 weeks
11 12.27 weeks 5.46 weeks 0.00 weeks 22.98 weeks
data_summary_plot(rdifftimeByDrvBypartySummaryExample)
make_kable_output(rdifftimeByDrvBypartySummaryExample)
drive type by some random political parties | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
front-wheel drive, republican | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 18 | 30.77 | 8.95 weeks | 6.26 weeks | 9.97 weeks | 5.64 weeks | 4.95 weeks | 11.98 weeks | 6.63 weeks | 0.00 weeks | 23.49 weeks |
rear wheel drive, republican | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 4 | 0.00 | 8.75 weeks | 4.34 weeks | 8.31 weeks | 4.84 weeks | 4.96 weeks | 11.48 weeks | 6.87 weeks | 4.96 weeks | 13.41 weeks |
4wd, republican | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 23 | 11.54 | 10.07 weeks | 6.02 weeks | 11.25 weeks | 6.73 weeks | 4.81 weeks | 15.45 weeks | 9.23 weeks | 0.00 weeks | 21.71 weeks |
front-wheel drive, democrat | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 17 | 5.56 | 11.37 weeks | 4.11 weeks | 12.03 weeks | 4.84 weeks | 7.55 weeks | 13.88 weeks | 6.32 weeks | 5.05 weeks | 18.28 weeks |
rear wheel drive, democrat | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 5 | 16.67 | 8.26 weeks | 3.99 weeks | 9.35 weeks | 5.25 weeks | 4.70 weeks | 10.78 weeks | 6.08 weeks | 3.57 weeks | 12.89 weeks |
4wd, democrat | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 30 | 18.92 | 8.31 weeks | 4.50 weeks | 7.60 weeks | 5.60 weeks | 6.41 weeks | 11.90 weeks | 5.46 weeks | 0.00 weeks | 16.25 weeks |
front-wheel drive, independent | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 26 | 18.75 | 10.75 weeks | 4.96 weeks | 10.31 weeks | 4.84 weeks | 5.99 weeks | 13.57 weeks | 6.80 weeks | 2.95 weeks | 21.65 weeks |
rear wheel drive, independent | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 6 | 14.29 | 8.80 weeks | 5.07 weeks | 8.18 weeks | 5.40 weeks | 5.44 weeks | 12.72 weeks | 5.66 weeks | 2.04 weeks | 16.22 weeks |
4wd, independent | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 15 | 34.78 | 9.86 weeks | 4.04 weeks | 9.58 weeks | 5.87 weeks | 5.61 weeks | 13.65 weeks | 6.94 weeks | 4.33 weeks | 15.38 weeks |
Overall | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 184 | 21.37 | 9.76 weeks | 5.07 weeks | 9.60 weeks | 5.12 weeks | 6.11 weeks | 13.05 weeks | 6.79 weeks | 0.00 weeks | 23.49 weeks |
R NA Value | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 40 | 27.27 | 10.08 weeks | 5.38 weeks | 10.06 weeks | 4.12 weeks | 6.76 weeks | 12.27 weeks | 5.46 weeks | 0.00 weeks | 22.98 weeks |
make_complete_output(rdifftimeByDrvBypartySummaryExample)
drive type by some random political parties | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
front-wheel drive, republican | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 18 | 30.77 | 8.95 weeks | 6.26 weeks | 9.97 weeks | 5.64 weeks | 4.95 weeks | 11.98 weeks | 6.63 weeks | 0.00 weeks | 23.49 weeks |
rear wheel drive, republican | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 4 | 0.00 | 8.75 weeks | 4.34 weeks | 8.31 weeks | 4.84 weeks | 4.96 weeks | 11.48 weeks | 6.87 weeks | 4.96 weeks | 13.41 weeks |
4wd, republican | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 23 | 11.54 | 10.07 weeks | 6.02 weeks | 11.25 weeks | 6.73 weeks | 4.81 weeks | 15.45 weeks | 9.23 weeks | 0.00 weeks | 21.71 weeks |
front-wheel drive, democrat | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 17 | 5.56 | 11.37 weeks | 4.11 weeks | 12.03 weeks | 4.84 weeks | 7.55 weeks | 13.88 weeks | 6.32 weeks | 5.05 weeks | 18.28 weeks |
rear wheel drive, democrat | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 5 | 16.67 | 8.26 weeks | 3.99 weeks | 9.35 weeks | 5.25 weeks | 4.70 weeks | 10.78 weeks | 6.08 weeks | 3.57 weeks | 12.89 weeks |
4wd, democrat | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 30 | 18.92 | 8.31 weeks | 4.50 weeks | 7.60 weeks | 5.60 weeks | 6.41 weeks | 11.90 weeks | 5.46 weeks | 0.00 weeks | 16.25 weeks |
front-wheel drive, independent | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 26 | 18.75 | 10.75 weeks | 4.96 weeks | 10.31 weeks | 4.84 weeks | 5.99 weeks | 13.57 weeks | 6.80 weeks | 2.95 weeks | 21.65 weeks |
rear wheel drive, independent | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 6 | 14.29 | 8.80 weeks | 5.07 weeks | 8.18 weeks | 5.40 weeks | 5.44 weeks | 12.72 weeks | 5.66 weeks | 2.04 weeks | 16.22 weeks |
4wd, independent | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 15 | 34.78 | 9.86 weeks | 4.04 weeks | 9.58 weeks | 5.87 weeks | 5.61 weeks | 13.65 weeks | 6.94 weeks | 4.33 weeks | 15.38 weeks |
Overall | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 184 | 21.37 | 9.76 weeks | 5.07 weeks | 9.60 weeks | 5.12 weeks | 6.11 weeks | 13.05 weeks | 6.79 weeks | 0.00 weeks | 23.49 weeks |
R NA Value | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 40 | 27.27 | 10.08 weeks | 5.38 weeks | 10.06 weeks | 4.12 weeks | 6.76 weeks | 12.27 weeks | 5.46 weeks | 0.00 weeks | 22.98 weeks |
Data Summaries
<- data_summary(x = "manu", data = mpg)
manuSummary
make_complete_output(manuSummary)
manufacturer | n (%) |
---|---|
audi | 18 (7.69%) |
chevrolet | 19 (8.12%) |
dodge | 37 (15.81%) |
ford | 25 (10.68%) |
honda | 9 (3.85%) |
hyundai | 14 (5.98%) |
jeep | 8 (3.42%) |
land rover | 4 (1.71%) |
lincoln | 3 (1.28%) |
mercury | 4 (1.71%) |
nissan | 13 (5.56%) |
pontiac | 5 (2.14%) |
subaru | 14 (5.98%) |
toyota | 34 (14.53%) |
volkswagen | 27 (11.54%) |
<- data_summary(x = "model", data = mpg)
modelSummary
make_complete_output(modelSummary)
model name | n (%) |
---|---|
4runner 4wd | 6 (2.56%) |
a4 | 7 (2.99%) |
a4 quattro | 8 (3.42%) |
a6 quattro | 3 (1.28%) |
altima | 6 (2.56%) |
c1500 suburban 2wd | 5 (2.14%) |
camry | 7 (2.99%) |
camry solara | 7 (2.99%) |
caravan 2wd | 11 (4.7%) |
civic | 9 (3.85%) |
corolla | 5 (2.14%) |
corvette | 5 (2.14%) |
dakota pickup 4wd | 9 (3.85%) |
durango 4wd | 7 (2.99%) |
expedition 2wd | 3 (1.28%) |
explorer 4wd | 6 (2.56%) |
f150 pickup 4wd | 7 (2.99%) |
forester awd | 6 (2.56%) |
grand cherokee 4wd | 8 (3.42%) |
grand prix | 5 (2.14%) |
gti | 5 (2.14%) |
impreza awd | 8 (3.42%) |
jetta | 9 (3.85%) |
k1500 tahoe 4wd | 4 (1.71%) |
land cruiser wagon 4wd | 2 (0.85%) |
malibu | 5 (2.14%) |
maxima | 3 (1.28%) |
mountaineer 4wd | 4 (1.71%) |
mustang | 9 (3.85%) |
navigator 2wd | 3 (1.28%) |
new beetle | 6 (2.56%) |
passat | 7 (2.99%) |
pathfinder 4wd | 4 (1.71%) |
ram 1500 pickup 4wd | 10 (4.27%) |
range rover | 4 (1.71%) |
sonata | 7 (2.99%) |
tiburon | 7 (2.99%) |
toyota tacoma 4wd | 7 (2.99%) |
<- data_summary(x = "displ", data = mpg)
displSummary
make_complete_output(displSummary)
Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
engine displacement, in litres | 234 | 0 | 3.47 | 1.29 | 3.3 | 1.33 | 2.4 | 4.6 | 2.2 | 1.6 | 7 |
<- data_summary(x = "year", data = mpg)
yearSummary
make_complete_output(yearSummary)
year of manufacture | n (%) |
---|---|
1999 | 117 (50%) |
2008 | 117 (50%) |
<- data_summary(x = "dp", data = mpg[which(mpg$dp != "1000-05-02" | is.na(mpg$dp)), ], difftime_units = "weeks")
dpSummary
make_complete_output(dpSummary)
Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
date of purchase (Date class) | 213 | 8.58 | 2003-12-21 | 236.59 weeks | 1999-12-24 | 74.98 weeks | 1999-07-14 | 2008-09-01 | 476.7143 weeks | 1999-01-04 | 2008-12-23 |
<- data_summary(x = "cyl", data = mpg)
cylSummary
make_complete_output(cylSummary)
number of cylinders | n (%) |
---|---|
4 | 81 (34.62%) |
5 | 4 (1.71%) |
6 | 79 (33.76%) |
8 | 70 (29.91%) |
<- data_summary(x = "trans", data = mpg)
transSummary
make_complete_output(transSummary)
type of transmission | n (%) |
---|---|
auto(av) | 5 (2.14%) |
auto(l3) | 2 (0.85%) |
auto(l4) | 83 (35.47%) |
auto(l5) | 39 (16.67%) |
auto(l6) | 6 (2.56%) |
auto(s4) | 3 (1.28%) |
auto(s5) | 3 (1.28%) |
auto(s6) | 16 (6.84%) |
manual(m5) | 58 (24.79%) |
manual(m6) | 19 (8.12%) |
<- data_summary(x = "drv", data = mpg)
drvSummary
make_complete_output(drvSummary)
drive type | n (%) |
---|---|
front-wheel drive | 106 (45.3%) |
rear wheel drive | 25 (10.68%) |
4wd | 103 (44.02%) |
<- data_summary(x = "cty", data = mpg)
ctySummary
make_complete_output(ctySummary)
Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17 | 4.45 | 14 | 19 | 5 | 9 | 35 |
<- data_summary(x = "hwy", data = mpg)
hwySummary
make_complete_output(hwySummary)
Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
highway miles per gallon | 234 | 0 | 23.44 | 5.95 | 24 | 7.41 | 18 | 27 | 9 | 12 | 44 |
<- data_summary(x = "fl", data = mpg)
flSummary
make_complete_output(flSummary)
fuel type | n (%) |
---|---|
c | 1 (0.43%) |
d | 5 (2.14%) |
e | 8 (3.42%) |
p | 52 (22.22%) |
r | 168 (71.79%) |
<- data_summary(x = "class", data = mpg)
classSummary
make_complete_output(classSummary)
type of car | n (%) |
---|---|
2seater | 5 (2.14%) |
compact | 47 (20.09%) |
midsize | 41 (17.52%) |
minivan | 11 (4.7%) |
pickup | 33 (14.1%) |
subcompact | 35 (14.96%) |
suv | 62 (26.5%) |
<- data_summary(x = "rn", data = mpg)
rnSummary
make_complete_output(rnSummary)
Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 | 184 | 21.37 | 10.53 | 5.09 | 10.73 | 4.72 | 7.12 | 13.32 | 6.12 | -2.54 | 23.46 |
<- data_summary(x = "rdifftime", difftime_units = "weeks", data = mpg)
rdifftimeSummary
make_complete_output(rdifftimeSummary)
Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 184 | 21.37 | 9.76 weeks | 5.07 weeks | 9.6 weeks | 5.12 weeks | 6.11 weeks | 13.05 weeks | 6.79 weeks | 0 weeks | 23.49 weeks |
<- data_summary(x = "logical", difftime_units = "weeks", data = mpg)
logicalSummary
make_complete_output(logicalSummary)
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, and then set to TRUE if the difference is greater than 10 | n (%) |
---|---|
FALSE | 96 (41.03%) |
TRUE | 88 (37.61%) |
R NA Value | 50 (21.37%) |
<- data_summary(x = "party", data = mpg)
partySummary
make_complete_output(partySummary)
some random political parties | n (%) |
---|---|
republican | 56 (23.93%) |
democrat | 61 (26.07%) |
independent | 62 (26.5%) |
R NA Value | 55 (23.5%) |
<- data_summary(x = "comments", data = mpg)
commentsSummary
make_complete_output(commentsSummary)
some random comments | n (%) |
---|---|
. | 26 (11.11%) |
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | 23 (9.83%) |
Does it also fly? | 16 (6.84%) |
Does it come in green? | 23 (9.83%) |
I like this car! | 24 (10.26%) |
Meh. | 18 (7.69%) |
Missing | 25 (10.68%) |
This is the worst car ever! | 22 (9.4%) |
want cheese flavoured cars. | 33 (14.1%) |
R NA Value | 24 (10.26%) |
<- data_summary(x = "miss", data = mpg)
missSummary
make_complete_output(missSummary)
an all missing variable | n (%) |
---|---|
R NA Value | 234 (100%) |
By Data Summaries
By Drive Type
<- data_summary(x = "cyl", by = "drv", data = mpg)
cylByDrvSummary
make_complete_output(cylByDrvSummary)
number of cylinders | front-wheel drive | rear wheel drive | 4wd | Overall |
---|---|---|---|---|
4 | 58 (54.72%) | 0 (0%) | 23 (22.33%) | 81 (34.62%) |
5 | 4 (3.77%) | 0 (0%) | 0 (0%) | 4 (1.71%) |
6 | 43 (40.57%) | 4 (16%) | 32 (31.07%) | 79 (33.76%) |
8 | 1 (0.94%) | 21 (84%) | 48 (46.6%) | 70 (29.91%) |
<- data_summary(x = "dp", by = "drv", data = mpg[which(mpg$dp != "1000-05-02" | is.na(mpg$dp)), ], difftime_units = "weeks")
dpByDrvSummary
make_complete_output(dpByDrvSummary)
drive type | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
front-wheel drive | date of purchase (Date class) | 94 | 11.32 | 2003-06-08 | 235.20 weeks | 1999-11-21 | 60.47 weeks | 1999-07-03 | 2008-08-25 | 477.2857 weeks | 1999-01-07 | 2008-12-23 |
rear wheel drive | date of purchase (Date class) | 24 | 4.00 | 2004-09-28 | 235.47 weeks | 2008-01-21 | 60.57 weeks | 1999-07-29 | 2008-07-13 | 467.4286 weeks | 1999-01-13 | 2008-12-14 |
4wd | date of purchase (Date class) | 95 | 6.86 | 2004-04-21 | 237.55 weeks | 2008-01-26 | 64.81 weeks | 1999-06-27 | 2008-09-01 | 479.1429 weeks | 1999-01-04 | 2008-12-09 |
Overall | date of purchase (Date class) | 213 | 8.58 | 2003-12-21 | 236.59 weeks | 1999-12-24 | 74.98 weeks | 1999-07-14 | 2008-09-01 | 476.7143 weeks | 1999-01-04 | 2008-12-23 |
<- data_summary(x = "rn", by = "drv", data = mpg)
rnByDrvSummary
make_complete_output(rnByDrvSummary)
drive type | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
front-wheel drive | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 | 86 | 18.87 | 10.50 | 5.32 | 9.88 | 4.68 | 7.36 | 13.95 | 6.53 | -2.54 | 23.46 |
rear wheel drive | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 | 18 | 28.00 | 11.59 | 4.49 | 11.05 | 2.89 | 9.62 | 14.28 | 4.58 | 0.28 | 20.81 |
4wd | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 | 80 | 22.33 | 10.33 | 4.99 | 11.20 | 4.60 | 6.20 | 13.08 | 6.78 | 0.57 | 23.42 |
Overall | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 | 184 | 21.37 | 10.53 | 5.09 | 10.73 | 4.72 | 7.12 | 13.32 | 6.12 | -2.54 | 23.46 |
<- data_summary(x = "rdifftime", by = "drv", difftime_units = "weeks", data = mpg)
rdifftimeByDrvSummary
make_complete_output(rdifftimeByDrvSummary)
drive type | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
front-wheel drive | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 86 | 18.87 | 10.57 weeks | 5.24 weeks | 10.79 weeks | 4.80 weeks | 6.59 weeks | 13.57 weeks | 6.87 weeks | 0 weeks | 23.49 weeks |
rear wheel drive | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 19 | 24.00 | 8.43 weeks | 5.17 weeks | 8.57 weeks | 5.74 weeks | 4.70 weeks | 12.72 weeks | 7.27 weeks | 0 weeks | 19.07 weeks |
4wd | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 79 | 23.30 | 9.19 weeks | 4.77 weeks | 9.02 weeks | 4.77 weeks | 6.11 weeks | 12.58 weeks | 6.15 weeks | 0 weeks | 21.71 weeks |
Overall | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 184 | 21.37 | 9.76 weeks | 5.07 weeks | 9.60 weeks | 5.12 weeks | 6.11 weeks | 13.05 weeks | 6.79 weeks | 0 weeks | 23.49 weeks |
<- data_summary(x = "logical", by = "drv", difftime_units = "weeks", data = mpg)
logicalByDrvSummary
make_complete_output(logicalByDrvSummary)
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, and then set to TRUE if the difference is greater than 10 | front-wheel drive | rear wheel drive | 4wd | Overall |
---|---|---|---|---|
FALSE | 40 (37.74%) | 11 (44%) | 45 (43.69%) | 96 (41.03%) |
TRUE | 46 (43.4%) | 8 (32%) | 34 (33.01%) | 88 (37.61%) |
R NA Value | 20 (18.87%) | 6 (24%) | 24 (23.3%) | 50 (21.37%) |
<- data_summary(x = "comments", by = "drv", data = mpg)
commentsByDrvSummary
make_complete_output(commentsByDrvSummary)
some random comments | front-wheel drive | rear wheel drive | 4wd | Overall |
---|---|---|---|---|
. | 9 (8.49%) | 5 (20%) | 12 (11.65%) | 26 (11.11%) |
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | 12 (11.32%) | 3 (12%) | 8 (7.77%) | 23 (9.83%) |
Does it also fly? | 11 (10.38%) | 1 (4%) | 4 (3.88%) | 16 (6.84%) |
Does it come in green? | 12 (11.32%) | 1 (4%) | 10 (9.71%) | 23 (9.83%) |
I like this car! | 13 (12.26%) | 1 (4%) | 10 (9.71%) | 24 (10.26%) |
Meh. | 6 (5.66%) | 2 (8%) | 10 (9.71%) | 18 (7.69%) |
Missing | 8 (7.55%) | 3 (12%) | 14 (13.59%) | 25 (10.68%) |
This is the worst car ever! | 14 (13.21%) | 2 (8%) | 6 (5.83%) | 22 (9.4%) |
want cheese flavoured cars. | 13 (12.26%) | 2 (8%) | 18 (17.48%) | 33 (14.1%) |
R NA Value | 8 (7.55%) | 5 (20%) | 11 (10.68%) | 24 (10.26%) |
<- data_summary(x = "miss", by = "drv", data = mpg)
missByDrvSummary
make_complete_output(missByDrvSummary)
an all missing variable | front-wheel drive | rear wheel drive | 4wd | Overall |
---|---|---|---|---|
R NA Value | 106 (100%) | 25 (100%) | 103 (100%) | 234 (100%) |
City and Highway MPG
<- data_summary(x = "cty", by = "manu", data = mpg)
ctyBymanuSummary
make_complete_output(ctyBymanuSummary)
manufacturer | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
audi | city miles per gallon | 18 | 0 | 17.61 | 1.97 | 17.5 | 2.22 | 16 | 19 | 2.75 | 15 | 21 |
chevrolet | city miles per gallon | 19 | 0 | 15.00 | 2.92 | 15.0 | 2.97 | 13 | 17 | 3.00 | 11 | 22 |
dodge | city miles per gallon | 37 | 0 | 13.14 | 2.49 | 13.0 | 2.97 | 11 | 15 | 4.00 | 9 | 18 |
ford | city miles per gallon | 25 | 0 | 14.00 | 1.91 | 14.0 | 1.48 | 13 | 15 | 2.00 | 11 | 18 |
honda | city miles per gallon | 9 | 0 | 24.44 | 1.94 | 24.0 | 1.48 | 24 | 25 | 1.00 | 21 | 28 |
hyundai | city miles per gallon | 14 | 0 | 18.64 | 1.50 | 18.5 | 1.48 | 18 | 20 | 1.75 | 16 | 21 |
jeep | city miles per gallon | 8 | 0 | 13.50 | 2.51 | 14.0 | 1.48 | 11 | 15 | 2.50 | 9 | 17 |
land rover | city miles per gallon | 4 | 0 | 11.50 | 0.58 | 11.5 | 0.74 | 11 | 12 | 1.00 | 11 | 12 |
lincoln | city miles per gallon | 3 | 0 | 11.33 | 0.58 | 11.0 | 0.00 | 11 | 12 | 0.50 | 11 | 12 |
mercury | city miles per gallon | 4 | 0 | 13.25 | 0.50 | 13.0 | 0.00 | 13 | 13 | 0.25 | 13 | 14 |
nissan | city miles per gallon | 13 | 0 | 18.08 | 3.43 | 19.0 | 2.97 | 15 | 19 | 4.00 | 12 | 23 |
pontiac | city miles per gallon | 5 | 0 | 17.00 | 1.00 | 17.0 | 1.48 | 16 | 18 | 2.00 | 16 | 18 |
subaru | city miles per gallon | 14 | 0 | 19.29 | 0.91 | 19.0 | 1.48 | 19 | 20 | 1.00 | 18 | 21 |
toyota | city miles per gallon | 34 | 0 | 18.53 | 4.05 | 18.0 | 4.45 | 15 | 21 | 6.00 | 11 | 28 |
volkswagen | city miles per gallon | 27 | 0 | 20.93 | 4.56 | 21.0 | 2.97 | 18 | 21 | 2.50 | 16 | 35 |
Overall | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17.0 | 4.45 | 14 | 19 | 5.00 | 9 | 35 |
<- data_summary(x = "hwy", by = "manu", data = mpg)
hwyBymanuSummary
make_complete_output(hwyBymanuSummary)
manufacturer | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
audi | highway miles per gallon | 18 | 0 | 26.44 | 2.18 | 26.0 | 1.48 | 25 | 28 | 2.75 | 23 | 31 |
chevrolet | highway miles per gallon | 19 | 0 | 21.89 | 5.11 | 23.0 | 5.93 | 17 | 26 | 9.00 | 14 | 30 |
dodge | highway miles per gallon | 37 | 0 | 17.95 | 3.57 | 17.0 | 2.97 | 16 | 21 | 5.00 | 12 | 24 |
ford | highway miles per gallon | 25 | 0 | 19.36 | 3.33 | 18.0 | 1.48 | 17 | 22 | 5.00 | 15 | 26 |
honda | highway miles per gallon | 9 | 0 | 32.56 | 2.55 | 32.0 | 2.97 | 32 | 34 | 2.00 | 29 | 36 |
hyundai | highway miles per gallon | 14 | 0 | 26.86 | 2.18 | 26.5 | 2.22 | 26 | 28 | 2.00 | 24 | 31 |
jeep | highway miles per gallon | 8 | 0 | 17.62 | 3.25 | 18.5 | 2.22 | 14 | 19 | 3.00 | 12 | 22 |
land rover | highway miles per gallon | 4 | 0 | 16.50 | 1.73 | 16.5 | 2.22 | 15 | 18 | 3.00 | 15 | 18 |
lincoln | highway miles per gallon | 3 | 0 | 17.00 | 1.00 | 17.0 | 1.48 | 16 | 18 | 1.00 | 16 | 18 |
mercury | highway miles per gallon | 4 | 0 | 18.00 | 1.15 | 18.0 | 1.48 | 17 | 19 | 2.00 | 17 | 19 |
nissan | highway miles per gallon | 13 | 0 | 24.62 | 5.09 | 26.0 | 4.45 | 20 | 27 | 7.00 | 17 | 32 |
pontiac | highway miles per gallon | 5 | 0 | 26.40 | 1.14 | 26.0 | 1.48 | 26 | 27 | 1.00 | 25 | 28 |
subaru | highway miles per gallon | 14 | 0 | 25.57 | 1.16 | 26.0 | 1.48 | 25 | 26 | 1.00 | 23 | 27 |
toyota | highway miles per gallon | 34 | 0 | 24.91 | 6.17 | 26.0 | 8.90 | 20 | 30 | 9.75 | 15 | 37 |
volkswagen | highway miles per gallon | 27 | 0 | 29.22 | 5.32 | 29.0 | 1.48 | 26 | 29 | 3.00 | 23 | 44 |
Overall | highway miles per gallon | 234 | 0 | 23.44 | 5.95 | 24.0 | 7.41 | 18 | 27 | 9.00 | 12 | 44 |
<- data_summary(x = "cty", by = "model", data = mpg)
ctyBymodelSummary
make_complete_output(ctyBymodelSummary)
model name | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4runner 4wd | city miles per gallon | 6 | 0 | 15.17 | 0.75 | 15.0 | 0.74 | 15 | 16 | 0.75 | 14 | 16 |
a4 | city miles per gallon | 7 | 0 | 18.86 | 1.86 | 18.0 | 2.97 | 18 | 21 | 2.50 | 16 | 21 |
a4 quattro | city miles per gallon | 8 | 0 | 17.12 | 1.81 | 17.0 | 2.22 | 15 | 18 | 2.50 | 15 | 20 |
a6 quattro | city miles per gallon | 3 | 0 | 16.00 | 1.00 | 16.0 | 1.48 | 15 | 17 | 1.00 | 15 | 17 |
altima | city miles per gallon | 6 | 0 | 20.67 | 1.97 | 20.0 | 1.48 | 19 | 23 | 3.50 | 19 | 23 |
c1500 suburban 2wd | city miles per gallon | 5 | 0 | 12.80 | 1.30 | 13.0 | 1.48 | 12 | 14 | 2.00 | 11 | 14 |
camry | city miles per gallon | 7 | 0 | 19.86 | 1.46 | 21.0 | 0.00 | 18 | 21 | 2.50 | 18 | 21 |
camry solara | city miles per gallon | 7 | 0 | 19.86 | 1.77 | 21.0 | 1.48 | 18 | 21 | 3.00 | 18 | 22 |
caravan 2wd | city miles per gallon | 11 | 0 | 15.82 | 1.83 | 16.0 | 1.48 | 15 | 17 | 1.50 | 11 | 18 |
civic | city miles per gallon | 9 | 0 | 24.44 | 1.94 | 24.0 | 1.48 | 24 | 25 | 1.00 | 21 | 28 |
corolla | city miles per gallon | 5 | 0 | 25.60 | 1.67 | 26.0 | 2.97 | 24 | 26 | 2.00 | 24 | 28 |
corvette | city miles per gallon | 5 | 0 | 15.40 | 0.55 | 15.0 | 0.00 | 15 | 16 | 1.00 | 15 | 16 |
dakota pickup 4wd | city miles per gallon | 9 | 0 | 12.78 | 1.99 | 14.0 | 1.48 | 11 | 14 | 3.00 | 9 | 15 |
durango 4wd | city miles per gallon | 7 | 0 | 11.86 | 1.57 | 13.0 | 0.00 | 11 | 13 | 2.00 | 9 | 13 |
expedition 2wd | city miles per gallon | 3 | 0 | 11.33 | 0.58 | 11.0 | 0.00 | 11 | 12 | 0.50 | 11 | 12 |
explorer 4wd | city miles per gallon | 6 | 0 | 13.67 | 0.82 | 13.5 | 0.74 | 13 | 14 | 1.00 | 13 | 15 |
f150 pickup 4wd | city miles per gallon | 7 | 0 | 13.00 | 1.00 | 13.0 | 0.00 | 13 | 14 | 0.50 | 11 | 14 |
forester awd | city miles per gallon | 6 | 0 | 18.83 | 0.98 | 18.5 | 0.74 | 18 | 20 | 1.75 | 18 | 20 |
grand cherokee 4wd | city miles per gallon | 8 | 0 | 13.50 | 2.51 | 14.0 | 1.48 | 11 | 15 | 2.50 | 9 | 17 |
grand prix | city miles per gallon | 5 | 0 | 17.00 | 1.00 | 17.0 | 1.48 | 16 | 18 | 2.00 | 16 | 18 |
gti | city miles per gallon | 5 | 0 | 20.00 | 2.00 | 21.0 | 1.48 | 19 | 21 | 2.00 | 17 | 22 |
impreza awd | city miles per gallon | 8 | 0 | 19.62 | 0.74 | 19.5 | 0.74 | 19 | 20 | 1.00 | 19 | 21 |
jetta | city miles per gallon | 9 | 0 | 21.22 | 4.87 | 21.0 | 1.48 | 19 | 21 | 2.00 | 16 | 33 |
k1500 tahoe 4wd | city miles per gallon | 4 | 0 | 12.50 | 1.73 | 12.5 | 2.22 | 11 | 14 | 3.00 | 11 | 14 |
land cruiser wagon 4wd | city miles per gallon | 2 | 0 | 12.00 | 1.41 | 12.0 | 1.48 | 11 | 13 | 1.00 | 11 | 13 |
malibu | city miles per gallon | 5 | 0 | 18.80 | 1.92 | 18.0 | 1.48 | 18 | 19 | 1.00 | 17 | 22 |
maxima | city miles per gallon | 3 | 0 | 18.67 | 0.58 | 19.0 | 0.00 | 18 | 19 | 0.50 | 18 | 19 |
mountaineer 4wd | city miles per gallon | 4 | 0 | 13.25 | 0.50 | 13.0 | 0.00 | 13 | 13 | 0.25 | 13 | 14 |
mustang | city miles per gallon | 9 | 0 | 15.89 | 1.45 | 15.0 | 1.48 | 15 | 17 | 2.00 | 14 | 18 |
navigator 2wd | city miles per gallon | 3 | 0 | 11.33 | 0.58 | 11.0 | 0.00 | 11 | 12 | 0.50 | 11 | 12 |
new beetle | city miles per gallon | 6 | 0 | 24.00 | 6.51 | 20.5 | 1.48 | 20 | 29 | 7.00 | 19 | 35 |
passat | city miles per gallon | 7 | 0 | 18.57 | 1.90 | 18.0 | 1.48 | 17 | 21 | 2.50 | 16 | 21 |
pathfinder 4wd | city miles per gallon | 4 | 0 | 13.75 | 1.26 | 14.0 | 0.74 | 12 | 14 | 0.75 | 12 | 15 |
ram 1500 pickup 4wd | city miles per gallon | 10 | 0 | 11.40 | 1.51 | 11.5 | 1.48 | 11 | 13 | 1.75 | 9 | 13 |
range rover | city miles per gallon | 4 | 0 | 11.50 | 0.58 | 11.5 | 0.74 | 11 | 12 | 1.00 | 11 | 12 |
sonata | city miles per gallon | 7 | 0 | 19.00 | 1.41 | 18.0 | 0.00 | 18 | 21 | 2.00 | 18 | 21 |
tiburon | city miles per gallon | 7 | 0 | 18.29 | 1.60 | 19.0 | 1.48 | 17 | 20 | 2.50 | 16 | 20 |
toyota tacoma 4wd | city miles per gallon | 7 | 0 | 15.57 | 0.79 | 15.0 | 0.00 | 15 | 16 | 1.00 | 15 | 17 |
Overall | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17.0 | 4.45 | 14 | 19 | 5.00 | 9 | 35 |
<- data_summary(x = "hwy", by = "model", data = mpg)
hwyBymodelSummary
make_complete_output(hwyBymodelSummary)
model name | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4runner 4wd | highway miles per gallon | 6 | 0 | 18.83 | 1.47 | 19.5 | 0.74 | 17 | 20 | 2.50 | 17 | 20 |
a4 | highway miles per gallon | 7 | 0 | 28.29 | 1.98 | 29.0 | 2.97 | 26 | 30 | 3.00 | 26 | 31 |
a4 quattro | highway miles per gallon | 8 | 0 | 25.75 | 1.16 | 25.0 | 0.00 | 25 | 26 | 1.25 | 25 | 28 |
a6 quattro | highway miles per gallon | 3 | 0 | 24.00 | 1.00 | 24.0 | 1.48 | 23 | 25 | 1.00 | 23 | 25 |
altima | highway miles per gallon | 6 | 0 | 28.67 | 2.42 | 28.0 | 2.22 | 27 | 31 | 3.50 | 26 | 32 |
c1500 suburban 2wd | highway miles per gallon | 5 | 0 | 17.80 | 2.17 | 17.0 | 2.97 | 17 | 20 | 3.00 | 15 | 20 |
camry | highway miles per gallon | 7 | 0 | 28.29 | 2.14 | 28.0 | 2.97 | 26 | 31 | 3.50 | 26 | 31 |
camry solara | highway miles per gallon | 7 | 0 | 28.14 | 2.19 | 27.0 | 1.48 | 26 | 31 | 3.50 | 26 | 31 |
caravan 2wd | highway miles per gallon | 11 | 0 | 22.36 | 2.06 | 23.0 | 1.48 | 22 | 24 | 2.00 | 17 | 24 |
civic | highway miles per gallon | 9 | 0 | 32.56 | 2.55 | 32.0 | 2.97 | 32 | 34 | 2.00 | 29 | 36 |
corolla | highway miles per gallon | 5 | 0 | 34.00 | 2.65 | 35.0 | 2.97 | 33 | 35 | 2.00 | 30 | 37 |
corvette | highway miles per gallon | 5 | 0 | 24.80 | 1.30 | 25.0 | 1.48 | 24 | 26 | 2.00 | 23 | 26 |
dakota pickup 4wd | highway miles per gallon | 9 | 0 | 17.00 | 2.29 | 17.0 | 2.97 | 17 | 19 | 2.00 | 12 | 19 |
durango 4wd | highway miles per gallon | 7 | 0 | 16.00 | 2.00 | 17.0 | 1.48 | 15 | 17 | 1.50 | 12 | 18 |
expedition 2wd | highway miles per gallon | 3 | 0 | 17.33 | 0.58 | 17.0 | 0.00 | 17 | 18 | 0.50 | 17 | 18 |
explorer 4wd | highway miles per gallon | 6 | 0 | 18.00 | 1.10 | 18.0 | 1.48 | 17 | 19 | 2.00 | 17 | 19 |
f150 pickup 4wd | highway miles per gallon | 7 | 0 | 16.43 | 0.79 | 17.0 | 0.00 | 16 | 17 | 1.00 | 15 | 17 |
forester awd | highway miles per gallon | 6 | 0 | 25.00 | 1.41 | 25.0 | 1.48 | 24 | 26 | 1.50 | 23 | 27 |
grand cherokee 4wd | highway miles per gallon | 8 | 0 | 17.62 | 3.25 | 18.5 | 2.22 | 14 | 19 | 3.00 | 12 | 22 |
grand prix | highway miles per gallon | 5 | 0 | 26.40 | 1.14 | 26.0 | 1.48 | 26 | 27 | 1.00 | 25 | 28 |
gti | highway miles per gallon | 5 | 0 | 27.40 | 2.30 | 29.0 | 0.00 | 26 | 29 | 3.00 | 24 | 29 |
impreza awd | highway miles per gallon | 8 | 0 | 26.00 | 0.76 | 26.0 | 0.74 | 25 | 26 | 0.50 | 25 | 27 |
jetta | highway miles per gallon | 9 | 0 | 29.11 | 6.07 | 29.0 | 0.00 | 26 | 29 | 3.00 | 23 | 44 |
k1500 tahoe 4wd | highway miles per gallon | 4 | 0 | 16.25 | 2.22 | 16.0 | 2.22 | 14 | 17 | 2.75 | 14 | 19 |
land cruiser wagon 4wd | highway miles per gallon | 2 | 0 | 16.50 | 2.12 | 16.5 | 2.22 | 15 | 18 | 1.50 | 15 | 18 |
malibu | highway miles per gallon | 5 | 0 | 27.60 | 1.82 | 27.0 | 1.48 | 26 | 29 | 3.00 | 26 | 30 |
maxima | highway miles per gallon | 3 | 0 | 25.33 | 0.58 | 25.0 | 0.00 | 25 | 26 | 0.50 | 25 | 26 |
mountaineer 4wd | highway miles per gallon | 4 | 0 | 18.00 | 1.15 | 18.0 | 1.48 | 17 | 19 | 2.00 | 17 | 19 |
mustang | highway miles per gallon | 9 | 0 | 23.22 | 2.17 | 23.0 | 2.97 | 22 | 25 | 3.00 | 20 | 26 |
navigator 2wd | highway miles per gallon | 3 | 0 | 17.00 | 1.00 | 17.0 | 1.48 | 16 | 18 | 1.00 | 16 | 18 |
new beetle | highway miles per gallon | 6 | 0 | 32.83 | 7.63 | 29.0 | 2.97 | 28 | 41 | 9.75 | 26 | 44 |
passat | highway miles per gallon | 7 | 0 | 27.57 | 1.51 | 28.0 | 1.48 | 26 | 29 | 3.00 | 26 | 29 |
pathfinder 4wd | highway miles per gallon | 4 | 0 | 18.00 | 1.41 | 17.5 | 0.74 | 17 | 18 | 1.50 | 17 | 20 |
ram 1500 pickup 4wd | highway miles per gallon | 10 | 0 | 15.30 | 1.89 | 16.0 | 1.48 | 15 | 17 | 1.75 | 12 | 17 |
range rover | highway miles per gallon | 4 | 0 | 16.50 | 1.73 | 16.5 | 2.22 | 15 | 18 | 3.00 | 15 | 18 |
sonata | highway miles per gallon | 7 | 0 | 27.71 | 2.06 | 27.0 | 1.48 | 26 | 30 | 3.00 | 26 | 31 |
tiburon | highway miles per gallon | 7 | 0 | 26.00 | 2.08 | 26.0 | 2.97 | 24 | 28 | 3.50 | 24 | 29 |
toyota tacoma 4wd | highway miles per gallon | 7 | 0 | 19.43 | 1.62 | 20.0 | 1.48 | 18 | 20 | 1.50 | 17 | 22 |
Overall | highway miles per gallon | 234 | 0 | 23.44 | 5.95 | 24.0 | 7.41 | 18 | 27 | 9.00 | 12 | 44 |
<- data_summary(x = "cty", by = "year", data = mpg)
ctyByYearSummary
make_complete_output(ctyByYearSummary)
year of manufacture | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1999 | city miles per gallon | 117 | 0 | 17.02 | 4.46 | 17 | 2.97 | 14 | 19 | 5 | 11 | 35 |
2008 | city miles per gallon | 117 | 0 | 16.70 | 4.06 | 17 | 4.45 | 13 | 20 | 7 | 9 | 28 |
Overall | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17 | 4.45 | 14 | 19 | 5 | 9 | 35 |
<- data_summary(x = "hwy", by = "year", data = mpg)
hwyByYearSummary
make_complete_output(hwyByYearSummary)
year of manufacture | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1999 | highway miles per gallon | 117 | 0 | 23.43 | 6.08 | 25 | 5.93 | 17 | 26 | 9 | 15 | 44 |
2008 | highway miles per gallon | 117 | 0 | 23.45 | 5.85 | 24 | 7.41 | 18 | 28 | 10 | 12 | 37 |
Overall | highway miles per gallon | 234 | 0 | 23.44 | 5.95 | 24 | 7.41 | 18 | 27 | 9 | 12 | 44 |
<- data_summary(x = "cty", by = "cyl", data = mpg)
ctyByCylSummary
make_complete_output(ctyByCylSummary)
number of cylinders | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | city miles per gallon | 81 | 0 | 21.01 | 3.50 | 21.0 | 2.97 | 19 | 22 | 3 | 15 | 35 |
5 | city miles per gallon | 4 | 0 | 20.50 | 0.58 | 20.5 | 0.74 | 20 | 21 | 1 | 20 | 21 |
6 | city miles per gallon | 79 | 0 | 16.22 | 1.77 | 16.0 | 1.48 | 15 | 18 | 3 | 11 | 19 |
8 | city miles per gallon | 70 | 0 | 12.57 | 1.81 | 13.0 | 2.22 | 11 | 14 | 3 | 9 | 16 |
Overall | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17.0 | 4.45 | 14 | 19 | 5 | 9 | 35 |
<- data_summary(x = "hwy", by = "cyl", data = mpg)
hwyByCylSummary
make_complete_output(hwyByCylSummary)
number of cylinders | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | highway miles per gallon | 81 | 0 | 28.80 | 4.52 | 29 | 2.97 | 26 | 31 | 5.00 | 20 | 44 |
5 | highway miles per gallon | 4 | 0 | 28.75 | 0.50 | 29 | 0.00 | 28 | 29 | 0.25 | 28 | 29 |
6 | highway miles per gallon | 79 | 0 | 22.82 | 3.69 | 24 | 2.97 | 19 | 26 | 7.00 | 17 | 29 |
8 | highway miles per gallon | 70 | 0 | 17.63 | 3.26 | 17 | 2.97 | 16 | 19 | 3.00 | 12 | 26 |
Overall | highway miles per gallon | 234 | 0 | 23.44 | 5.95 | 24 | 7.41 | 18 | 27 | 9.00 | 12 | 44 |
<- data_summary(x = "cty", by = "trans", data = mpg)
ctyBytransSummary
make_complete_output(ctyBytransSummary)
type of transmission | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
auto(av) | city miles per gallon | 5 | 0 | 20.00 | 2.00 | 19 | 1.48 | 19 | 21 | 2.0 | 18 | 23 |
auto(l3) | city miles per gallon | 2 | 0 | 21.00 | 4.24 | 21 | 4.45 | 18 | 24 | 3.0 | 18 | 24 |
auto(l4) | city miles per gallon | 83 | 0 | 15.94 | 3.98 | 16 | 4.45 | 13 | 18 | 5.0 | 11 | 29 |
auto(l5) | city miles per gallon | 39 | 0 | 14.72 | 3.49 | 14 | 1.48 | 13 | 16 | 3.0 | 9 | 25 |
auto(l6) | city miles per gallon | 6 | 0 | 13.67 | 1.86 | 13 | 1.48 | 12 | 16 | 3.0 | 12 | 16 |
auto(s4) | city miles per gallon | 3 | 0 | 18.67 | 2.31 | 20 | 0.00 | 16 | 20 | 2.0 | 16 | 20 |
auto(s5) | city miles per gallon | 3 | 0 | 17.33 | 5.03 | 18 | 5.93 | 12 | 22 | 5.0 | 12 | 22 |
auto(s6) | city miles per gallon | 16 | 0 | 17.38 | 3.22 | 17 | 2.97 | 15 | 19 | 3.5 | 12 | 22 |
manual(m5) | city miles per gallon | 58 | 0 | 19.26 | 4.56 | 19 | 2.97 | 17 | 21 | 4.0 | 11 | 35 |
manual(m6) | city miles per gallon | 19 | 0 | 16.89 | 3.83 | 16 | 5.93 | 15 | 21 | 5.5 | 9 | 23 |
Overall | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17 | 4.45 | 14 | 19 | 5.0 | 9 | 35 |
<- data_summary(x = "hwy", by = "trans", data = mpg)
hwyBytransSummary
make_complete_output(hwyBytransSummary)
type of transmission | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
auto(av) | highway miles per gallon | 5 | 0 | 27.80 | 2.59 | 27 | 2.97 | 26 | 30 | 4.00 | 25 | 31 |
auto(l3) | highway miles per gallon | 2 | 0 | 27.00 | 4.24 | 27 | 4.45 | 24 | 30 | 3.00 | 24 | 30 |
auto(l4) | highway miles per gallon | 83 | 0 | 21.96 | 5.64 | 22 | 7.41 | 17 | 26 | 9.00 | 14 | 41 |
auto(l5) | highway miles per gallon | 39 | 0 | 20.72 | 6.04 | 19 | 2.97 | 17 | 25 | 7.50 | 12 | 36 |
auto(l6) | highway miles per gallon | 6 | 0 | 20.00 | 2.37 | 19 | 1.48 | 18 | 23 | 3.75 | 18 | 23 |
auto(s4) | highway miles per gallon | 3 | 0 | 25.67 | 1.15 | 25 | 0.00 | 25 | 27 | 1.00 | 25 | 27 |
auto(s5) | highway miles per gallon | 3 | 0 | 25.33 | 6.66 | 27 | 5.93 | 18 | 31 | 6.50 | 18 | 31 |
auto(s6) | highway miles per gallon | 16 | 0 | 25.19 | 3.99 | 26 | 3.71 | 23 | 28 | 3.75 | 18 | 29 |
manual(m5) | highway miles per gallon | 58 | 0 | 26.29 | 5.99 | 26 | 4.45 | 24 | 29 | 5.00 | 16 | 44 |
manual(m6) | highway miles per gallon | 19 | 0 | 24.21 | 5.75 | 26 | 4.45 | 19 | 29 | 9.50 | 12 | 32 |
Overall | highway miles per gallon | 234 | 0 | 23.44 | 5.95 | 24 | 7.41 | 18 | 27 | 9.00 | 12 | 44 |
<- data_summary(x = "cty", by = "drv", data = mpg)
ctyByDrvSummary
make_complete_output(ctyByDrvSummary)
drive type | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
front-wheel drive | city miles per gallon | 106 | 0 | 19.97 | 3.63 | 19 | 2.97 | 18 | 21 | 3 | 11 | 35 |
rear wheel drive | city miles per gallon | 25 | 0 | 14.08 | 2.22 | 15 | 1.48 | 12 | 15 | 3 | 11 | 18 |
4wd | city miles per gallon | 103 | 0 | 14.33 | 2.87 | 14 | 2.97 | 13 | 16 | 3 | 9 | 21 |
Overall | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17 | 4.45 | 14 | 19 | 5 | 9 | 35 |
<- data_summary(x = "hwy", by = "drv", data = mpg)
hwyByDrvSummary
make_complete_output(hwyByDrvSummary)
drive type | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
front-wheel drive | highway miles per gallon | 106 | 0 | 28.16 | 4.21 | 28 | 2.97 | 26 | 29 | 3 | 17 | 44 |
rear wheel drive | highway miles per gallon | 25 | 0 | 21.00 | 3.66 | 21 | 5.93 | 17 | 24 | 7 | 15 | 26 |
4wd | highway miles per gallon | 103 | 0 | 19.17 | 4.08 | 18 | 2.97 | 17 | 22 | 5 | 12 | 28 |
Overall | highway miles per gallon | 234 | 0 | 23.44 | 5.95 | 24 | 7.41 | 18 | 27 | 9 | 12 | 44 |
<- data_summary(x = "cty", by = "fl", data = mpg)
ctyByflSummary
make_complete_output(ctyByflSummary)
fuel type | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
c | city miles per gallon | 1 | 0 | 24.00 | NA | 24 | 0.00 | 24 | 24 | 0.0 | 24 | 24 |
d | city miles per gallon | 5 | 0 | 25.60 | 9.53 | 29 | 8.90 | 17 | 33 | 16.0 | 14 | 35 |
e | city miles per gallon | 8 | 0 | 9.75 | 1.04 | 9 | 0.00 | 9 | 11 | 2.0 | 9 | 11 |
p | city miles per gallon | 52 | 0 | 17.37 | 3.04 | 18 | 2.97 | 15 | 19 | 3.5 | 11 | 23 |
r | city miles per gallon | 168 | 0 | 16.74 | 3.89 | 16 | 4.45 | 14 | 19 | 5.0 | 11 | 28 |
Overall | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17 | 4.45 | 14 | 19 | 5.0 | 9 | 35 |
<- data_summary(x = "hwy", by = "fl", data = mpg)
hwyByflSummary
make_complete_output(hwyByflSummary)
fuel type | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
c | highway miles per gallon | 1 | 0 | 36.00 | NA | 36 | 0.00 | 36 | 36 | 0.00 | 36 | 36 |
d | highway miles per gallon | 5 | 0 | 33.60 | 13.05 | 41 | 4.45 | 22 | 44 | 22.00 | 17 | 44 |
e | highway miles per gallon | 8 | 0 | 13.25 | 1.91 | 12 | 0.00 | 12 | 14 | 2.25 | 12 | 17 |
p | highway miles per gallon | 52 | 0 | 25.23 | 3.93 | 26 | 2.97 | 25 | 28 | 3.25 | 14 | 31 |
r | highway miles per gallon | 168 | 0 | 22.99 | 5.51 | 23 | 7.41 | 17 | 27 | 9.25 | 15 | 37 |
Overall | highway miles per gallon | 234 | 0 | 23.44 | 5.95 | 24 | 7.41 | 18 | 27 | 9.00 | 12 | 44 |
<- data_summary(x = "cty", by = "class", data = mpg)
ctyByclassSummary
make_complete_output(ctyByclassSummary)
type of car | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2seater | city miles per gallon | 5 | 0 | 15.40 | 0.55 | 15 | 0.00 | 15 | 16 | 1.00 | 15 | 16 |
compact | city miles per gallon | 47 | 0 | 20.13 | 3.39 | 20 | 2.97 | 18 | 21 | 3.00 | 15 | 33 |
midsize | city miles per gallon | 41 | 0 | 18.76 | 1.95 | 18 | 1.48 | 18 | 21 | 3.00 | 15 | 23 |
minivan | city miles per gallon | 11 | 0 | 15.82 | 1.83 | 16 | 1.48 | 15 | 17 | 1.50 | 11 | 18 |
pickup | city miles per gallon | 33 | 0 | 13.00 | 2.05 | 13 | 2.97 | 11 | 14 | 3.00 | 9 | 17 |
subcompact | city miles per gallon | 35 | 0 | 20.37 | 4.60 | 19 | 2.97 | 17 | 24 | 6.50 | 14 | 35 |
suv | city miles per gallon | 62 | 0 | 13.50 | 2.42 | 13 | 2.22 | 12 | 15 | 2.75 | 9 | 20 |
Overall | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17 | 4.45 | 14 | 19 | 5.00 | 9 | 35 |
<- data_summary(x = "hwy", by = "class", data = mpg)
hwyByclassSummary
make_complete_output(hwyByclassSummary)
type of car | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2seater | highway miles per gallon | 5 | 0 | 24.80 | 1.30 | 25.0 | 1.48 | 24 | 26 | 2 | 23 | 26 |
compact | highway miles per gallon | 47 | 0 | 28.30 | 3.78 | 27.0 | 2.97 | 26 | 29 | 3 | 23 | 44 |
midsize | highway miles per gallon | 41 | 0 | 27.29 | 2.14 | 27.0 | 1.48 | 26 | 29 | 3 | 23 | 32 |
minivan | highway miles per gallon | 11 | 0 | 22.36 | 2.06 | 23.0 | 1.48 | 22 | 24 | 2 | 17 | 24 |
pickup | highway miles per gallon | 33 | 0 | 16.88 | 2.27 | 17.0 | 1.48 | 16 | 18 | 2 | 12 | 22 |
subcompact | highway miles per gallon | 35 | 0 | 28.14 | 5.38 | 26.0 | 4.45 | 24 | 32 | 6 | 20 | 44 |
suv | highway miles per gallon | 62 | 0 | 18.13 | 2.98 | 17.5 | 2.22 | 17 | 19 | 2 | 12 | 27 |
Overall | highway miles per gallon | 234 | 0 | 23.44 | 5.95 | 24.0 | 7.41 | 18 | 27 | 9 | 12 | 44 |
<- data_summary(x = "cty", by = "comments", data = mpg)
ctyByCommentsSummary
make_complete_output(ctyByCommentsSummary)
some random comments | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
. | city miles per gallon | 26 | 0 | 15.42 | 3.94 | 15.0 | 2.97 | 13 | 17 | 4.0 | 9 | 28 |
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | city miles per gallon | 23 | 0 | 17.04 | 3.23 | 17.0 | 2.97 | 15 | 19 | 3.5 | 11 | 22 |
Does it also fly? | city miles per gallon | 16 | 0 | 17.94 | 5.52 | 18.0 | 3.71 | 14 | 19 | 4.5 | 11 | 35 |
Does it come in green? | city miles per gallon | 23 | 0 | 18.39 | 4.31 | 19.0 | 2.97 | 14 | 21 | 6.5 | 11 | 28 |
I like this car! | city miles per gallon | 24 | 0 | 17.92 | 5.16 | 18.0 | 5.93 | 14 | 21 | 7.0 | 11 | 33 |
Meh. | city miles per gallon | 18 | 0 | 16.33 | 3.40 | 16.0 | 3.71 | 14 | 19 | 4.5 | 11 | 25 |
Missing | city miles per gallon | 25 | 0 | 15.84 | 5.16 | 15.0 | 4.45 | 12 | 19 | 7.0 | 9 | 26 |
This is the worst car ever! | city miles per gallon | 22 | 0 | 17.09 | 4.00 | 18.0 | 4.45 | 14 | 19 | 4.5 | 9 | 26 |
want cheese flavoured cars. | city miles per gallon | 33 | 0 | 16.91 | 3.95 | 16.0 | 2.97 | 14 | 20 | 6.0 | 11 | 29 |
Overall | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17.0 | 4.45 | 14 | 19 | 5.0 | 9 | 35 |
R NA Value | city miles per gallon | 24 | 0 | 16.17 | 3.34 | 15.5 | 3.71 | 14 | 19 | 5.0 | 11 | 22 |
<- data_summary(x = "hwy", by = "comments", data = mpg)
hwyByCommentsSummary
make_complete_output(hwyByCommentsSummary)
some random comments | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
. | highway miles per gallon | 26 | 0 | 22.08 | 5.60 | 23.5 | 6.67 | 17 | 26 | 9.00 | 12 | 33 |
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | highway miles per gallon | 23 | 0 | 24.09 | 4.95 | 26.0 | 4.45 | 20 | 29 | 8.50 | 15 | 31 |
Does it also fly? | highway miles per gallon | 16 | 0 | 24.75 | 7.33 | 25.5 | 5.19 | 17 | 28 | 9.75 | 14 | 44 |
Does it come in green? | highway miles per gallon | 23 | 0 | 25.26 | 5.50 | 27.0 | 4.45 | 19 | 29 | 9.50 | 16 | 37 |
I like this car! | highway miles per gallon | 24 | 0 | 24.75 | 7.25 | 26.0 | 7.41 | 17 | 29 | 12.00 | 15 | 44 |
Meh. | highway miles per gallon | 18 | 0 | 22.61 | 4.58 | 23.5 | 5.19 | 19 | 26 | 7.00 | 15 | 32 |
Missing | highway miles per gallon | 25 | 0 | 21.96 | 7.33 | 19.0 | 5.93 | 17 | 26 | 9.00 | 12 | 36 |
This is the worst car ever! | highway miles per gallon | 22 | 0 | 23.82 | 5.78 | 25.0 | 5.93 | 19 | 28 | 8.50 | 12 | 35 |
want cheese flavoured cars. | highway miles per gallon | 33 | 0 | 23.33 | 5.85 | 24.0 | 7.41 | 17 | 27 | 10.00 | 15 | 41 |
Overall | highway miles per gallon | 234 | 0 | 23.44 | 5.95 | 24.0 | 7.41 | 18 | 27 | 9.00 | 12 | 44 |
R NA Value | highway miles per gallon | 24 | 0 | 22.33 | 4.72 | 24.0 | 5.19 | 17 | 25 | 7.50 | 15 | 31 |
<- data_summary(x = "cty", by = "party", data = mpg)
ctyByPartySummary
make_complete_output(ctyByPartySummary)
some random political parties | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
republican | city miles per gallon | 56 | 0 | 17.29 | 4.52 | 17 | 5.19 | 14 | 21 | 7 | 9 | 29 |
democrat | city miles per gallon | 61 | 0 | 16.26 | 4.59 | 16 | 4.45 | 13 | 19 | 6 | 9 | 33 |
independent | city miles per gallon | 62 | 0 | 16.84 | 3.39 | 17 | 3.71 | 14 | 19 | 5 | 9 | 24 |
Overall | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17 | 4.45 | 14 | 19 | 5 | 9 | 35 |
R NA Value | city miles per gallon | 55 | 0 | 17.11 | 4.50 | 17 | 2.97 | 14 | 19 | 5 | 9 | 35 |
<- data_summary(x = "hwy", by = "party", data = mpg)
hwyByPartySummary
make_complete_output(hwyByPartySummary)
some random political parties | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
republican | highway miles per gallon | 56 | 0 | 23.57 | 6.42 | 24 | 7.41 | 17 | 29 | 12 | 12 | 41 |
democrat | highway miles per gallon | 61 | 0 | 22.38 | 6.25 | 21 | 7.41 | 17 | 27 | 10 | 12 | 44 |
independent | highway miles per gallon | 62 | 0 | 23.68 | 4.83 | 25 | 4.45 | 19 | 27 | 8 | 12 | 36 |
Overall | highway miles per gallon | 234 | 0 | 23.44 | 5.95 | 24 | 7.41 | 18 | 27 | 9 | 12 | 44 |
R NA Value | highway miles per gallon | 55 | 0 | 24.22 | 6.26 | 26 | 4.45 | 18 | 28 | 10 | 12 | 44 |
<- data_summary(x = "cty", by = "miss", data = mpg)
ctyByMissSummary
make_complete_output(ctyByMissSummary)
an all missing variable | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17 | 4.45 | 14 | 19 | 5 | 9 | 35 |
R NA Value | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17 | 4.45 | 14 | 19 | 5 | 9 | 35 |
<- data_summary(x = "hwy", by = "miss", data = mpg)
hwyByMissSummary
make_complete_output(hwyByMissSummary)
an all missing variable | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | highway miles per gallon | 234 | 0 | 23.44 | 5.95 | 24 | 7.41 | 18 | 27 | 9 | 12 | 44 |
R NA Value | highway miles per gallon | 234 | 0 | 23.44 | 5.95 | 24 | 7.41 | 18 | 27 | 9 | 12 | 44 |
Other Examples
<- data_summary(x = "dp", by = "year", data = mpg[which(mpg$dp != "1000-05-02" | is.na(mpg$dp)), ], difftime_units = "weeks")
dpByYearSummary
make_complete_output(dpByYearSummary)
year of manufacture | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1999 | date of purchase (Date class) | 107 | 8.55 | 1999-06-23 | 14.72 weeks | 1999-06-23 | 18.64 weeks | 1999-03-27 | 1999-10-13 | 28.57143 weeks | 1999-01-04 | 1999-12-24 |
2008 | date of purchase (Date class) | 106 | 8.62 | 2008-07-03 | 14.96 weeks | 2008-07-12 | 18.43 weeks | 2008-04-16 | 2008-10-18 | 26.42857 weeks | 2008-01-02 | 2008-12-23 |
Overall | date of purchase (Date class) | 213 | 8.58 | 2003-12-21 | 236.59 weeks | 1999-12-24 | 74.98 weeks | 1999-07-14 | 2008-09-01 | 476.71429 weeks | 1999-01-04 | 2008-12-23 |
<- data_summary(x = "dp", by = "comments", data = mpg[which(mpg$dp != "1000-05-02" | is.na(mpg$dp)), ], difftime_units = "weeks")
dpByCommentsSummary
make_complete_output(dpByCommentsSummary)
some random comments | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
. | date of purchase (Date class) | 25 | 3.85 | 2004-08-08 | 237.07 weeks | 2008-02-08 | 60.57 weeks | 1999-09-19 | 2008-09-06 | 467.8571 weeks | 1999-01-13 | 2008-11-27 |
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (Date class) | 21 | 8.70 | 2003-10-28 | 243.86 weeks | 1999-12-14 | 66.51 weeks | 1999-06-28 | 2008-08-02 | 474.7143 weeks | 1999-02-03 | 2008-12-23 |
Does it also fly? | date of purchase (Date class) | 13 | 18.75 | 2002-12-21 | 240.09 weeks | 1999-10-13 | 52.31 weeks | 1999-07-03 | 2008-11-10 | 488.2857 weeks | 1999-01-14 | 2008-11-26 |
Does it come in green? | date of purchase (Date class) | 23 | 0.00 | 2004-01-22 | 241.15 weeks | 2008-01-04 | 71.80 weeks | 1999-04-26 | 2008-03-24 | 465.0000 weeks | 1999-01-16 | 2008-12-08 |
I like this car! | date of purchase (Date class) | 20 | 13.04 | 2003-08-29 | 246.12 weeks | 1999-11-13 | 54.96 weeks | 1999-06-23 | 2008-09-23 | 482.8571 weeks | 1999-02-12 | 2008-12-15 |
Meh. | date of purchase (Date class) | 17 | 5.56 | 2004-02-12 | 243.37 weeks | 2008-01-27 | 51.47 weeks | 1999-04-04 | 2008-05-27 | 477.2857 weeks | 1999-01-05 | 2008-09-26 |
Missing | date of purchase (Date class) | 22 | 12.00 | 2005-03-23 | 234.82 weeks | 2008-03-25 | 44.90 weeks | 1999-08-24 | 2008-10-11 | 476.5714 weeks | 1999-01-04 | 2008-11-15 |
This is the worst car ever! | date of purchase (Date class) | 21 | 4.55 | 2003-11-06 | 240.62 weeks | 1999-11-24 | 52.31 weeks | 1999-06-27 | 2008-07-17 | 472.5714 weeks | 1999-03-22 | 2008-10-26 |
want cheese flavoured cars. | date of purchase (Date class) | 31 | 6.06 | 2003-04-02 | 235.66 weeks | 1999-12-06 | 58.46 weeks | 1999-05-07 | 2008-06-24 | 476.5714 weeks | 1999-01-26 | 2008-12-09 |
Overall | date of purchase (Date class) | 213 | 8.58 | 2003-12-21 | 236.59 weeks | 1999-12-24 | 74.98 weeks | 1999-07-14 | 2008-09-01 | 476.7143 weeks | 1999-01-04 | 2008-12-23 |
R NA Value | date of purchase (Date class) | 20 | 16.67 | 2003-12-06 | 236.95 weeks | 2003-12-24 | 337.72 weeks | 1999-08-14 | 2008-06-25 | 462.5714 weeks | 1999-01-07 | 2008-12-03 |
<- data_summary(x = "rn", by = "party", data = mpg)
rnByPartySummary
make_complete_output(rnByPartySummary)
some random political parties | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
republican | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 | 41 | 26.79 | 10.39 | 6.15 | 11.78 | 4.28 | 5.67 | 13.95 | 8.28 | -0.19 | 22.88 |
democrat | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 | 46 | 24.59 | 10.00 | 5.37 | 10.41 | 5.38 | 6.34 | 13.24 | 6.74 | -2.54 | 23.46 |
independent | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 | 54 | 12.90 | 10.60 | 4.99 | 10.49 | 5.46 | 7.12 | 14.52 | 7.25 | 0.74 | 20.81 |
Overall | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 | 184 | 21.37 | 10.53 | 5.09 | 10.73 | 4.72 | 7.12 | 13.32 | 6.12 | -2.54 | 23.46 |
R NA Value | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5 | 43 | 21.82 | 11.16 | 3.71 | 10.72 | 2.65 | 8.99 | 12.81 | 3.72 | 4.42 | 22.44 |
<- data_summary(x = "rdifftime", by = "party", difftime_units = "weeks", data = mpg)
rdifftimeByPartySummary
make_complete_output(rdifftimeByPartySummary)
some random political parties | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
republican | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 45 | 19.64 | 9.50 weeks | 5.91 weeks | 10.35 weeks | 6.54 weeks | 4.96 weeks | 13.06 weeks | 8.11 weeks | 0.00 weeks | 23.49 weeks |
democrat | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 52 | 14.75 | 9.31 weeks | 4.49 weeks | 9.38 weeks | 4.37 weeks | 6.44 weeks | 12.68 weeks | 6.23 weeks | 0.00 weeks | 18.28 weeks |
independent | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 47 | 24.19 | 10.22 weeks | 4.64 weeks | 9.58 weeks | 5.87 weeks | 5.61 weeks | 13.57 weeks | 7.64 weeks | 2.04 weeks | 21.65 weeks |
Overall | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 184 | 21.37 | 9.76 weeks | 5.07 weeks | 9.60 weeks | 5.12 weeks | 6.11 weeks | 13.05 weeks | 6.79 weeks | 0.00 weeks | 23.49 weeks |
R NA Value | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 40 | 27.27 | 10.08 weeks | 5.38 weeks | 10.06 weeks | 4.12 weeks | 6.76 weeks | 12.27 weeks | 5.46 weeks | 0.00 weeks | 22.98 weeks |
<- data_summary(x = "rdifftime", by = "comments", difftime_units = "weeks", data = mpg)
rdifftimeByCommentsSummary
make_complete_output(rdifftimeByCommentsSummary)
some random comments | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
. | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 21 | 19.23 | 8.21 weeks | 5.55 weeks | 9.07 weeks | 5.97 weeks | 4.81 weeks | 10.97 weeks | 6.16 weeks | 0.00 weeks | 19.07 weeks |
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 19 | 17.39 | 8.32 weeks | 4.50 weeks | 9.57 weeks | 3.78 weeks | 4.33 weeks | 11.54 weeks | 6.86 weeks | 0.00 weeks | 14.76 weeks |
Does it also fly? | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 14 | 12.50 | 9.49 weeks | 5.54 weeks | 10.25 weeks | 4.60 weeks | 6.51 weeks | 13.29 weeks | 6.34 weeks | 0.00 weeks | 21.14 weeks |
Does it come in green? | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 19 | 17.39 | 8.51 weeks | 4.28 weeks | 8.76 weeks | 4.49 weeks | 5.27 weeks | 11.79 weeks | 5.44 weeks | 0.00 weeks | 16.31 weeks |
I like this car! | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 22 | 8.33 | 10.44 weeks | 6.03 weeks | 9.78 weeks | 6.78 weeks | 5.32 weeks | 16.22 weeks | 10.30 weeks | 1.79 weeks | 21.65 weeks |
Meh. | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 13 | 27.78 | 10.21 weeks | 4.88 weeks | 10.56 weeks | 4.61 weeks | 7.13 weeks | 12.60 weeks | 5.47 weeks | 3.88 weeks | 21.71 weeks |
Missing | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 19 | 24.00 | 11.44 weeks | 5.29 weeks | 12.24 weeks | 5.19 weeks | 6.65 weeks | 15.38 weeks | 8.17 weeks | 3.57 weeks | 23.49 weeks |
This is the worst car ever! | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 17 | 22.73 | 9.28 weeks | 4.29 weeks | 9.63 weeks | 4.80 weeks | 6.76 weeks | 13.05 weeks | 6.29 weeks | 0.36 weeks | 13.93 weeks |
want cheese flavoured cars. | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 26 | 21.21 | 10.88 weeks | 3.62 weeks | 11.19 weeks | 3.00 weeks | 9.01 weeks | 13.16 weeks | 3.91 weeks | 2.53 weeks | 17.07 weeks |
Overall | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 184 | 21.37 | 9.76 weeks | 5.07 weeks | 9.60 weeks | 5.12 weeks | 6.11 weeks | 13.05 weeks | 6.79 weeks | 0.00 weeks | 23.49 weeks |
R NA Value | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks | 14 | 41.67 | 10.69 weeks | 6.75 weeks | 11.80 weeks | 7.16 weeks | 5.23 weeks | 15.02 weeks | 9.42 weeks | 0.00 weeks | 22.98 weeks |
<- data_summary(x = "comments", by = "party", data = mpg)
commentsByPartySummary
make_complete_output(commentsByPartySummary)
some random comments | republican | democrat | independent | Overall | R NA Value |
---|---|---|---|---|---|
. | 3 (5.36%) | 7 (11.48%) | 9 (14.52%) | 26 (11.11%) | 7 (12.73%) |
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | 5 (8.93%) | 7 (11.48%) | 6 (9.68%) | 23 (9.83%) | 5 (9.09%) |
Does it also fly? | 1 (1.79%) | 6 (9.84%) | 3 (4.84%) | 16 (6.84%) | 6 (10.91%) |
Does it come in green? | 8 (14.29%) | 6 (9.84%) | 6 (9.68%) | 23 (9.83%) | 3 (5.45%) |
I like this car! | 6 (10.71%) | 6 (9.84%) | 8 (12.9%) | 24 (10.26%) | 4 (7.27%) |
Meh. | 10 (17.86%) | 5 (8.2%) | 0 (0%) | 18 (7.69%) | 3 (5.45%) |
Missing | 5 (8.93%) | 9 (14.75%) | 6 (9.68%) | 25 (10.68%) | 5 (9.09%) |
This is the worst car ever! | 9 (16.07%) | 4 (6.56%) | 4 (6.45%) | 22 (9.4%) | 5 (9.09%) |
want cheese flavoured cars. | 7 (12.5%) | 7 (11.48%) | 10 (16.13%) | 33 (14.1%) | 9 (16.36%) |
R NA Value | 2 (3.57%) | 4 (6.56%) | 10 (16.13%) | 24 (10.26%) | 8 (14.55%) |
By By Data Summaries
<- data_summary(x = "cty", by = c("cyl", "class"), data = mpg)
ctyByCylByClassSummary
make_complete_output(ctyByCylByClassSummary)
number of cylinders by type of car | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
8, 2seater | city miles per gallon | 5 | 0 | 15.40 | 0.55 | 15.0 | 0.00 | 15 | 16 | 1.00 | 15 | 16 |
4, compact | city miles per gallon | 32 | 0 | 21.38 | 3.25 | 21.0 | 1.48 | 19 | 22 | 2.25 | 16 | 33 |
5, compact | city miles per gallon | 2 | 0 | 21.00 | 0.00 | 21.0 | 0.00 | 21 | 21 | 0.00 | 21 | 21 |
6, compact | city miles per gallon | 13 | 0 | 16.92 | 1.12 | 17.0 | 1.48 | 16 | 18 | 2.00 | 15 | 18 |
4, midsize | city miles per gallon | 16 | 0 | 20.50 | 1.63 | 21.0 | 0.74 | 19 | 21 | 2.00 | 18 | 23 |
6, midsize | city miles per gallon | 23 | 0 | 17.78 | 1.09 | 18.0 | 1.48 | 17 | 19 | 1.50 | 15 | 19 |
8, midsize | city miles per gallon | 2 | 0 | 16.00 | 0.00 | 16.0 | 0.00 | 16 | 16 | 0.00 | 16 | 16 |
4, minivan | city miles per gallon | 1 | 0 | 18.00 | NA | 18.0 | 0.00 | 18 | 18 | 0.00 | 18 | 18 |
6, minivan | city miles per gallon | 10 | 0 | 15.60 | 1.78 | 16.0 | 1.48 | 15 | 17 | 1.50 | 11 | 17 |
4, pickup | city miles per gallon | 3 | 0 | 16.00 | 1.00 | 16.0 | 1.48 | 15 | 17 | 1.00 | 15 | 17 |
6, pickup | city miles per gallon | 10 | 0 | 14.50 | 0.85 | 14.5 | 0.74 | 14 | 15 | 1.00 | 13 | 16 |
8, pickup | city miles per gallon | 20 | 0 | 11.80 | 1.58 | 12.0 | 1.48 | 11 | 13 | 2.00 | 9 | 14 |
4, subcompact | city miles per gallon | 21 | 0 | 22.86 | 4.19 | 21.0 | 2.97 | 19 | 25 | 6.00 | 19 | 35 |
5, subcompact | city miles per gallon | 2 | 0 | 20.00 | 0.00 | 20.0 | 0.00 | 20 | 20 | 0.00 | 20 | 20 |
6, subcompact | city miles per gallon | 7 | 0 | 17.00 | 0.82 | 17.0 | 1.48 | 16 | 18 | 1.00 | 16 | 18 |
8, subcompact | city miles per gallon | 5 | 0 | 14.80 | 0.45 | 15.0 | 0.00 | 15 | 15 | 0.00 | 14 | 15 |
4, suv | city miles per gallon | 8 | 0 | 18.00 | 1.77 | 18.0 | 2.22 | 16 | 19 | 1.75 | 15 | 20 |
6, suv | city miles per gallon | 16 | 0 | 14.50 | 1.10 | 14.5 | 0.74 | 14 | 15 | 1.00 | 13 | 17 |
8, suv | city miles per gallon | 38 | 0 | 12.13 | 1.36 | 12.0 | 1.48 | 11 | 13 | 2.00 | 9 | 14 |
Overall | city miles per gallon | 234 | 0 | 16.86 | 4.26 | 17.0 | 4.45 | 14 | 19 | 5.00 | 9 | 35 |
<- data_summary(x = "hwy", by = c("cyl", "class"), data = mpg)
hwyByCylByClassSummary
make_complete_output(hwyByCylByClassSummary)
number of cylinders by type of car | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
8, 2seater | highway miles per gallon | 5 | 0 | 24.80 | 1.30 | 25.0 | 1.48 | 24 | 26 | 2.00 | 23 | 26 |
4, compact | highway miles per gallon | 32 | 0 | 29.47 | 3.93 | 29.0 | 2.97 | 27 | 30 | 3.25 | 25 | 44 |
5, compact | highway miles per gallon | 2 | 0 | 29.00 | 0.00 | 29.0 | 0.00 | 29 | 29 | 0.00 | 29 | 29 |
6, compact | highway miles per gallon | 13 | 0 | 25.31 | 1.18 | 25.0 | 1.48 | 25 | 26 | 1.00 | 23 | 27 |
4, midsize | highway miles per gallon | 16 | 0 | 29.19 | 1.80 | 29.0 | 2.97 | 27 | 31 | 3.25 | 26 | 32 |
6, midsize | highway miles per gallon | 23 | 0 | 26.26 | 1.14 | 26.0 | 0.00 | 26 | 27 | 0.50 | 24 | 29 |
8, midsize | highway miles per gallon | 2 | 0 | 24.00 | 1.41 | 24.0 | 1.48 | 23 | 25 | 1.00 | 23 | 25 |
4, minivan | highway miles per gallon | 1 | 0 | 24.00 | NA | 24.0 | 0.00 | 24 | 24 | 0.00 | 24 | 24 |
6, minivan | highway miles per gallon | 10 | 0 | 22.20 | 2.10 | 22.5 | 1.48 | 22 | 24 | 1.75 | 17 | 24 |
4, pickup | highway miles per gallon | 3 | 0 | 20.67 | 1.15 | 20.0 | 0.00 | 20 | 22 | 1.00 | 20 | 22 |
6, pickup | highway miles per gallon | 10 | 0 | 17.90 | 1.10 | 17.5 | 0.74 | 17 | 19 | 1.75 | 17 | 20 |
8, pickup | highway miles per gallon | 20 | 0 | 15.80 | 1.99 | 16.0 | 1.48 | 15 | 17 | 2.00 | 12 | 19 |
4, subcompact | highway miles per gallon | 21 | 0 | 30.81 | 5.12 | 29.0 | 4.45 | 26 | 33 | 7.00 | 26 | 44 |
5, subcompact | highway miles per gallon | 2 | 0 | 28.50 | 0.71 | 28.5 | 0.74 | 28 | 29 | 0.50 | 28 | 29 |
6, subcompact | highway miles per gallon | 7 | 0 | 24.71 | 0.95 | 24.0 | 0.00 | 24 | 26 | 1.50 | 24 | 26 |
8, subcompact | highway miles per gallon | 5 | 0 | 21.60 | 1.14 | 22.0 | 1.48 | 21 | 22 | 1.00 | 20 | 23 |
4, suv | highway miles per gallon | 8 | 0 | 23.75 | 2.60 | 24.5 | 2.22 | 20 | 25 | 3.00 | 20 | 27 |
6, suv | highway miles per gallon | 16 | 0 | 18.50 | 1.55 | 19.0 | 2.22 | 17 | 19 | 2.25 | 17 | 22 |
8, suv | highway miles per gallon | 38 | 0 | 16.79 | 1.91 | 17.0 | 1.48 | 15 | 18 | 2.75 | 12 | 20 |
Overall | highway miles per gallon | 234 | 0 | 23.44 | 5.95 | 24.0 | 7.41 | 18 | 27 | 9.00 | 12 | 44 |
<- data_summary(x = "dp", by = c("cyl", "comments"), difftime_units = "weeks", data = mpg[which(mpg$dp != "1000-05-02" | is.na(mpg$dp)), ])
dpByCylByCommentsSummary
make_complete_output(dpByCylByCommentsSummary)
number of cylinders by some random comments | Label | N | P NA | Mean | S Dev | Med | MAD | 25th P | 75th P | IQR | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4, . | date of purchase (Date class) | 5 | 0.00 | 2003-01-27 | 252.39 weeks | 1999-10-26 | 54.64 weeks | 1999-02-10 | 2008-02-08 | 469.285714 weeks | 1999-02-10 | 2008-08-12 |
6, . | date of purchase (Date class) | 9 | 0.00 | 2004-08-21 | 241.15 weeks | 2008-04-02 | 44.27 weeks | 1999-08-28 | 2008-06-18 | 459.571429 weeks | 1999-07-14 | 2008-10-28 |
8, . | date of purchase (Date class) | 10 | 9.09 | 2004-11-28 | 246.03 weeks | 2008-02-07 | 61.53 weeks | 1999-10-05 | 2008-09-06 | 465.571429 weeks | 1999-01-13 | 2008-11-27 |
4, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (Date class) | 9 | 0.00 | 2002-08-10 | 241.71 weeks | 1999-09-12 | 38.34 weeks | 1999-03-15 | 2008-05-25 | 479.857143 weeks | 1999-03-08 | 2008-12-23 |
6, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (Date class) | 7 | 12.50 | 2004-08-16 | 254.96 weeks | 2008-05-13 | 31.13 weeks | 1999-06-07 | 2008-08-02 | 477.714286 weeks | 1999-03-19 | 2008-10-07 |
8, Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | date of purchase (Date class) | 4 | 0.00 | 2004-01-07 | 274.68 weeks | 2004-02-23 | 342.16 weeks | 1999-02-03 | 2008-06-12 | 488.142857 weeks | 1999-02-03 | 2008-09-09 |
4, Does it also fly? | date of purchase (Date class) | 5 | 0.00 | 2002-12-14 | 265.47 weeks | 1999-08-06 | 43.21 weeks | 1999-01-14 | 2008-02-14 | 474.000000 weeks | 1999-01-14 | 2008-11-26 |
6, Does it also fly? | date of purchase (Date class) | 4 | 42.86 | 2001-09-28 | 225.84 weeks | 1999-08-23 | 12.71 weeks | 1999-07-03 | NA | NA weeks | 1999-06-15 | 2008-03-25 |
8, Does it also fly? | date of purchase (Date class) | 4 | 0.00 | 2004-03-25 | 272.68 weeks | 2004-04-06 | 347.46 weeks | 1999-07-16 | 2008-08-25 | 475.428571 weeks | 1999-07-16 | 2008-11-10 |
4, Does it come in green? | date of purchase (Date class) | 15 | 0.00 | 2003-07-23 | 243.88 weeks | 1999-08-26 | 47.02 weeks | 1999-03-24 | 2008-02-26 | 465.857143 weeks | 1999-01-16 | 2008-10-13 |
6, Does it come in green? | date of purchase (Date class) | 3 | 0.00 | 2002-06-23 | 268.42 weeks | 1999-09-09 | 27.75 weeks | 1999-05-01 | 1999-09-09 | 18.714286 weeks | 1999-05-01 | 2008-05-31 |
8, Does it come in green? | date of purchase (Date class) | 5 | 0.00 | 2006-07-09 | 217.62 weeks | 2008-02-09 | 24.15 weeks | 1999-02-01 | 2008-06-02 | 487.000000 weeks | 1999-02-01 | 2008-12-08 |
4, I like this car! | date of purchase (Date class) | 8 | 11.11 | 2005-04-06 | 247.72 weeks | 2008-07-29 | 20.33 weeks | 1999-06-23 | 2008-09-23 | 482.857143 weeks | 1999-06-08 | 2008-12-12 |
6, I like this car! | date of purchase (Date class) | 7 | 22.22 | 2002-01-30 | 232.78 weeks | 1999-08-23 | 25.84 weeks | 1999-04-23 | 2008-09-05 | 489.000000 weeks | 1999-03-13 | 2008-09-05 |
8, I like this car! | date of purchase (Date class) | 4 | 0.00 | 2001-11-20 | 246.39 weeks | 1999-09-27 | 30.61 weeks | 1999-02-12 | 1999-11-28 | 41.285714 weeks | 1999-02-12 | 2008-12-14 |
4, Meh. | date of purchase (Date class) | 6 | 0.00 | 1999-05-01 | 9.86 weeks | 1999-04-25 | 8.47 weeks | 1999-03-26 | 1999-05-16 | 7.285714 weeks | 1999-01-25 | 1999-08-11 |
6, Meh. | date of purchase (Date class) | 6 | 0.00 | 2005-06-05 | 248.14 weeks | 2008-04-27 | 26.58 weeks | 1999-07-31 | 2008-05-08 | 457.714286 weeks | 1999-01-05 | 2008-09-26 |
8, Meh. | date of purchase (Date class) | 5 | 16.67 | 2008-04-14 | 9.80 weeks | 2008-04-15 | 11.44 weeks | 2008-02-21 | 2008-05-27 | 13.714286 weeks | 2008-01-27 | 2008-07-13 |
4, Missing | date of purchase (Date class) | 3 | 50.00 | 2002-08-26 | 280.92 weeks | 1999-10-09 | 34.74 weeks | 1999-10-09 | NA | NA weeks | 1999-04-28 | 2008-11-11 |
6, Missing | date of purchase (Date class) | 5 | 0.00 | 2004-12-23 | 255.73 weeks | 2008-05-24 | 21.18 weeks | 1999-07-30 | 2008-08-09 | 471.142857 weeks | 1999-07-30 | 2008-09-01 |
8, Missing | date of purchase (Date class) | 14 | 0.00 | 2005-11-13 | 226.66 weeks | 2008-04-02 | 38.55 weeks | 1999-10-04 | 2008-09-08 | 466.000000 weeks | 1999-01-04 | 2008-11-15 |
4, This is the worst car ever! | date of purchase (Date class) | 7 | 0.00 | 2003-05-28 | 247.48 weeks | 1999-11-24 | 50.62 weeks | 1999-06-03 | 2008-02-10 | 453.428571 weeks | 1999-03-30 | 2008-09-29 |
6, This is the worst car ever! | date of purchase (Date class) | 9 | 10.00 | 2002-08-03 | 237.70 weeks | 1999-10-18 | 38.34 weeks | 1999-04-20 | 2008-09-13 | 490.571429 weeks | 1999-03-22 | 2008-10-26 |
8, This is the worst car ever! | date of purchase (Date class) | 5 | 0.00 | 2006-09-25 | 213.60 weeks | 2008-07-04 | 16.10 weeks | 1999-06-02 | 2008-09-18 | 485.142857 weeks | 1999-06-02 | 2008-09-19 |
4, want cheese flavoured cars. | date of purchase (Date class) | 10 | 9.09 | 2003-02-13 | 238.91 weeks | 1999-12-10 | 57.50 weeks | 1999-06-09 | 2008-05-15 | 466.142857 weeks | 1999-02-17 | 2008-10-31 |
6, want cheese flavoured cars. | date of purchase (Date class) | 13 | 0.00 | 2002-04-09 | 231.98 weeks | 1999-08-31 | 36.85 weeks | 1999-03-10 | 2008-06-24 | 484.857143 weeks | 1999-01-26 | 2008-12-09 |
8, want cheese flavoured cars. | date of purchase (Date class) | 8 | 11.11 | 2005-01-02 | 240.53 weeks | 2008-02-06 | 44.16 weeks | 1999-05-21 | 2008-07-18 | 478.000000 weeks | 1999-04-01 | 2008-10-18 |
Overall | date of purchase (Date class) | 213 | 8.58 | 2003-12-21 | 236.59 weeks | 1999-12-24 | 74.98 weeks | 1999-07-14 | 2008-09-01 | 476.714286 weeks | 1999-01-04 | 2008-12-23 |
R NA Value | date of purchase (Date class) | 20 | 16.67 | 2003-12-06 | 236.95 weeks | 2003-12-24 | 337.72 weeks | 1999-08-14 | 2008-06-25 | 462.571429 weeks | 1999-01-07 | 2008-12-03 |
<- data_summary(x = "comments", by = c("cyl", "class"), data = mpg)
commentsByCylByClassSummary
make_complete_output(commentsByCylByClassSummary)
some random comments | 4, 2seater | 5, 2seater | 6, 2seater | 8, 2seater | 4, compact | 5, compact | 6, compact | 8, compact | 4, midsize | 5, midsize | 6, midsize | 8, midsize | 4, minivan | 5, minivan | 6, minivan | 8, minivan | 4, pickup | 5, pickup | 6, pickup | 8, pickup | 4, subcompact | 5, subcompact | 6, subcompact | 8, subcompact | 4, suv | 5, suv | 6, suv | 8, suv | Overall |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
. | 0 (NaN%) | 0 (NaN%) | 0 (NaN%) | 1 (20%) | 2 (6.25%) | 0 (0%) | 1 (7.69%) | 0 (NaN%) | 1 (6.25%) | 0 (NaN%) | 4 (17.39%) | 0 (0%) | 0 (0%) | 0 (NaN%) | 1 (10%) | 0 (NaN%) | 0 (0%) | 0 (NaN%) | 1 (10%) | 4 (20%) | 1 (4.76%) | 1 (50%) | 1 (14.29%) | 1 (20%) | 1 (12.5%) | 0 (NaN%) | 1 (6.25%) | 5 (13.16%) | 26 (11.11%) |
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | 0 (NaN%) | 0 (NaN%) | 0 (NaN%) | 0 (0%) | 3 (9.38%) | 2 (100%) | 0 (0%) | 0 (NaN%) | 3 (18.75%) | 0 (NaN%) | 3 (13.04%) | 0 (0%) | 0 (0%) | 0 (NaN%) | 0 (0%) | 0 (NaN%) | 1 (33.33%) | 0 (NaN%) | 2 (20%) | 1 (5%) | 0 (0%) | 0 (0%) | 2 (28.57%) | 1 (20%) | 2 (25%) | 0 (NaN%) | 1 (6.25%) | 2 (5.26%) | 23 (9.83%) |
Does it also fly? | 0 (NaN%) | 0 (NaN%) | 0 (NaN%) | 0 (0%) | 1 (3.12%) | 0 (0%) | 0 (0%) | 0 (NaN%) | 1 (6.25%) | 0 (NaN%) | 4 (17.39%) | 1 (50%) | 0 (0%) | 0 (NaN%) | 1 (10%) | 0 (NaN%) | 0 (0%) | 0 (NaN%) | 0 (0%) | 0 (0%) | 3 (14.29%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (NaN%) | 2 (12.5%) | 3 (7.89%) | 16 (6.84%) |
Does it come in green? | 0 (NaN%) | 0 (NaN%) | 0 (NaN%) | 0 (0%) | 7 (21.88%) | 0 (0%) | 1 (7.69%) | 0 (NaN%) | 3 (18.75%) | 0 (NaN%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (NaN%) | 0 (0%) | 0 (NaN%) | 0 (0%) | 0 (NaN%) | 0 (0%) | 0 (0%) | 3 (14.29%) | 0 (0%) | 0 (0%) | 0 (0%) | 2 (25%) | 0 (NaN%) | 2 (12.5%) | 5 (13.16%) | 23 (9.83%) |
I like this car! | 0 (NaN%) | 0 (NaN%) | 0 (NaN%) | 0 (0%) | 4 (12.5%) | 0 (0%) | 3 (23.08%) | 0 (NaN%) | 3 (18.75%) | 0 (NaN%) | 1 (4.35%) | 0 (0%) | 0 (0%) | 0 (NaN%) | 1 (10%) | 0 (NaN%) | 1 (33.33%) | 0 (NaN%) | 2 (20%) | 2 (10%) | 2 (9.52%) | 1 (50%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (NaN%) | 2 (12.5%) | 2 (5.26%) | 24 (10.26%) |
Meh. | 0 (NaN%) | 0 (NaN%) | 0 (NaN%) | 1 (20%) | 1 (3.12%) | 0 (0%) | 0 (0%) | 0 (NaN%) | 1 (6.25%) | 0 (NaN%) | 1 (4.35%) | 0 (0%) | 0 (0%) | 0 (NaN%) | 1 (10%) | 0 (NaN%) | 0 (0%) | 0 (NaN%) | 1 (10%) | 1 (5%) | 4 (19.05%) | 0 (0%) | 1 (14.29%) | 0 (0%) | 0 (0%) | 0 (NaN%) | 2 (12.5%) | 4 (10.53%) | 18 (7.69%) |
Missing | 0 (NaN%) | 0 (NaN%) | 0 (NaN%) | 1 (20%) | 4 (12.5%) | 0 (0%) | 0 (0%) | 0 (NaN%) | 0 (0%) | 0 (NaN%) | 2 (8.7%) | 1 (50%) | 0 (0%) | 0 (NaN%) | 1 (10%) | 0 (NaN%) | 0 (0%) | 0 (NaN%) | 0 (0%) | 5 (25%) | 2 (9.52%) | 0 (0%) | 0 (0%) | 1 (20%) | 0 (0%) | 0 (NaN%) | 2 (12.5%) | 6 (15.79%) | 25 (10.68%) |
This is the worst car ever! | 0 (NaN%) | 0 (NaN%) | 0 (NaN%) | 0 (0%) | 5 (15.62%) | 0 (0%) | 2 (15.38%) | 0 (NaN%) | 1 (6.25%) | 0 (NaN%) | 3 (13.04%) | 0 (0%) | 1 (100%) | 0 (NaN%) | 2 (20%) | 0 (NaN%) | 0 (0%) | 0 (NaN%) | 1 (10%) | 2 (10%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (20%) | 0 (0%) | 0 (NaN%) | 2 (12.5%) | 2 (5.26%) | 22 (9.4%) |
want cheese flavoured cars. | 0 (NaN%) | 0 (NaN%) | 0 (NaN%) | 1 (20%) | 3 (9.38%) | 0 (0%) | 3 (23.08%) | 0 (NaN%) | 2 (12.5%) | 0 (NaN%) | 4 (17.39%) | 0 (0%) | 0 (0%) | 0 (NaN%) | 2 (20%) | 0 (NaN%) | 1 (33.33%) | 0 (NaN%) | 2 (20%) | 4 (20%) | 4 (19.05%) | 0 (0%) | 1 (14.29%) | 0 (0%) | 1 (12.5%) | 0 (NaN%) | 1 (6.25%) | 4 (10.53%) | 33 (14.1%) |
R NA Value | 0 (NaN%) | 0 (NaN%) | 0 (NaN%) | 1 (20%) | 2 (6.25%) | 0 (0%) | 3 (23.08%) | 0 (NaN%) | 1 (6.25%) | 0 (NaN%) | 1 (4.35%) | 0 (0%) | 0 (0%) | 0 (NaN%) | 1 (10%) | 0 (NaN%) | 0 (0%) | 0 (NaN%) | 1 (10%) | 1 (5%) | 2 (9.52%) | 0 (0%) | 2 (28.57%) | 1 (20%) | 2 (25%) | 0 (NaN%) | 1 (6.25%) | 5 (13.16%) | 24 (10.26%) |
Summary Tables
invisible(setGeneric(name = "univariate_data_summary", def = function(object) standardGeneric("univariate_data_summary")))
setMethod(
f = "univariate_data_summary",
signature = "dataSummaries",
definition = function(object)
{if (all(c("Mean", "S Dev") %in% colnames(object@table))) {
<- paste("<b>", object@xLab, ", Mean (SD)</b>", sep = "")
xlab
if (length(object@difftime_units) > 0) {
<- paste(object@table[, "Mean"], " (", object@table[, "S Dev"], " ", object@difftime_units, ")", sep = "")
res else {
} <- paste(object@table[, "Mean"], " (", object@table[, "S Dev"], ")", sep = "")
res
}
<- data.frame(res)
res $rname <- xlab
res<- res[, c(2, 1)]
res colnames(res) <- c("", "")
rownames(res) <- NULL
else {
} <- paste("<b>", object@xLab, ", n (%)", "</b>", sep = "")
xlab <- c("", object@table[, -1])
res <- data.frame(res, stringsAsFactors = FALSE)
res $rnames <- c(xlab, paste(" ", as.character(object@table[, 1]), sep = ""))
res<- res[, c(2, 1)]
res colnames(res) <- c("", "")
rownames(res) <- NULL
}
return(res)
}
)
<- list(
univariateDataSummaryList
manuSummary,
modelSummary,
displSummary,
yearSummary,
dpSummary,
cylSummary,
transSummary,
drvSummary,
ctySummary,
hwySummary,
flSummary,
classSummary,
rnSummary,
rdifftimeSummary,
logicalSummary,
partySummary,
commentsSummary,
missSummary
)
<- do.call("rbind", lapply(univariateDataSummaryList, univariate_data_summary))
cars_univariate_data_summary
kable(cars_univariate_data_summary, caption = "Data summaries", booktabs = TRUE, escape = FALSE, format = "html", table.attr = "data-quarto-disable-processing=true") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = TRUE, font_size = 14)
manufacturer, n (%) | |
audi | 18 (7.69%) |
chevrolet | 19 (8.12%) |
dodge | 37 (15.81%) |
ford | 25 (10.68%) |
honda | 9 (3.85%) |
hyundai | 14 (5.98%) |
jeep | 8 (3.42%) |
land rover | 4 (1.71%) |
lincoln | 3 (1.28%) |
mercury | 4 (1.71%) |
nissan | 13 (5.56%) |
pontiac | 5 (2.14%) |
subaru | 14 (5.98%) |
toyota | 34 (14.53%) |
volkswagen | 27 (11.54%) |
model name, n (%) | |
4runner 4wd | 6 (2.56%) |
a4 | 7 (2.99%) |
a4 quattro | 8 (3.42%) |
a6 quattro | 3 (1.28%) |
altima | 6 (2.56%) |
c1500 suburban 2wd | 5 (2.14%) |
camry | 7 (2.99%) |
camry solara | 7 (2.99%) |
caravan 2wd | 11 (4.7%) |
civic | 9 (3.85%) |
corolla | 5 (2.14%) |
corvette | 5 (2.14%) |
dakota pickup 4wd | 9 (3.85%) |
durango 4wd | 7 (2.99%) |
expedition 2wd | 3 (1.28%) |
explorer 4wd | 6 (2.56%) |
f150 pickup 4wd | 7 (2.99%) |
forester awd | 6 (2.56%) |
grand cherokee 4wd | 8 (3.42%) |
grand prix | 5 (2.14%) |
gti | 5 (2.14%) |
impreza awd | 8 (3.42%) |
jetta | 9 (3.85%) |
k1500 tahoe 4wd | 4 (1.71%) |
land cruiser wagon 4wd | 2 (0.85%) |
malibu | 5 (2.14%) |
maxima | 3 (1.28%) |
mountaineer 4wd | 4 (1.71%) |
mustang | 9 (3.85%) |
navigator 2wd | 3 (1.28%) |
new beetle | 6 (2.56%) |
passat | 7 (2.99%) |
pathfinder 4wd | 4 (1.71%) |
ram 1500 pickup 4wd | 10 (4.27%) |
range rover | 4 (1.71%) |
sonata | 7 (2.99%) |
tiburon | 7 (2.99%) |
toyota tacoma 4wd | 7 (2.99%) |
engine displacement, in litres, Mean (SD) | 3.47 (1.29) |
year of manufacture, n (%) | |
1999 | 117 (50%) |
2008 | 117 (50%) |
date of purchase (Date class), Mean (SD) | 2003-12-21 (236.59 weeks) |
number of cylinders, n (%) | |
4 | 81 (34.62%) |
5 | 4 (1.71%) |
6 | 79 (33.76%) |
8 | 70 (29.91%) |
type of transmission, n (%) | |
auto(av) | 5 (2.14%) |
auto(l3) | 2 (0.85%) |
auto(l4) | 83 (35.47%) |
auto(l5) | 39 (16.67%) |
auto(l6) | 6 (2.56%) |
auto(s4) | 3 (1.28%) |
auto(s5) | 3 (1.28%) |
auto(s6) | 16 (6.84%) |
manual(m5) | 58 (24.79%) |
manual(m6) | 19 (8.12%) |
drive type, n (%) | |
front-wheel drive | 106 (45.3%) |
rear wheel drive | 25 (10.68%) |
4wd | 103 (44.02%) |
city miles per gallon, Mean (SD) | 16.86 (4.26) |
highway miles per gallon, Mean (SD) | 23.44 (5.95) |
fuel type, n (%) | |
c | 1 (0.43%) |
d | 5 (2.14%) |
e | 8 (3.42%) |
p | 52 (22.22%) |
r | 168 (71.79%) |
type of car, n (%) | |
2seater | 5 (2.14%) |
compact | 47 (20.09%) |
midsize | 41 (17.52%) |
minivan | 11 (4.7%) |
pickup | 33 (14.1%) |
subcompact | 35 (14.96%) |
suv | 62 (26.5%) |
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, Mean (SD) | 10.53 (5.09) |
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, Mean (SD) | 9.76 (5.07 weeks) |
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, and then set to TRUE if the difference is greater than 10, n (%) | |
FALSE | 96 (41.03%) |
TRUE | 88 (37.61%) |
R NA Value | 50 (21.37%) |
some random political parties, n (%) | |
republican | 56 (23.93%) |
democrat | 61 (26.07%) |
independent | 62 (26.5%) |
R NA Value | 55 (23.5%) |
some random comments, n (%) | |
. | 26 (11.11%) |
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | 23 (9.83%) |
Does it also fly? | 16 (6.84%) |
Does it come in green? | 23 (9.83%) |
I like this car! | 24 (10.26%) |
Meh. | 18 (7.69%) |
Missing | 25 (10.68%) |
This is the worst car ever! | 22 (9.4%) |
want cheese flavoured cars. | 33 (14.1%) |
R NA Value | 24 (10.26%) |
an all missing variable, n (%) | |
R NA Value | 234 (100%) |
invisible(setGeneric(name = "by_data_summary", def = function(object) standardGeneric("by_data_summary")))
setMethod(
f = "by_data_summary",
signature = "dataSummaries",
definition = function(object)
{if (all(c("Mean", "S Dev") %in% colnames(object@table))) {
<- t(object@table[, c("Mean", "S Dev")])
res
if (length(object@difftime_units) > 0) {
<- paste(object@table[, "Mean"], " (", object@table[, "S Dev"], " ", object@difftime_units, ")", sep = "")
res else {
} <- paste(object@table[, "Mean"], " (", object@table[, "S Dev"], ")", sep = "")
res
}
<- data.frame(t(res))
res $label <- paste("<b>", object@xLab, ", Mean (SD)</b>", sep = "")
resrownames(res) <- NULL
<- res[, c(which(colnames(res) == "label"), which(!(1:dim(res)[2] %in% which(colnames(res) == "label"))))]
res colnames(res) <- c("", as.character(object@table[, 1]))
else {
} <- object@table
res 1] <- paste(" ", res[, 1], sep = "")
res[, <- rbind("", res)
res 1,1] <- paste("<b>", object@xLab, ", N (%)</b>", sep = "")
res[colnames(res)[1] <- ""
}
return(res)
}
)
<- list(
byDataSummaryList
ctyByDrvSummary,
hwyByDrvSummary,
cylByDrvSummary,
dpByDrvSummary,
rnByDrvSummary,
rdifftimeByDrvSummary,
logicalByDrvSummary,
commentsByDrvSummary,
missByDrvSummary
)
<- do.call("rbind", lapply(byDataSummaryList, by_data_summary))
cars_by_data_summary
kable(cars_by_data_summary, caption = "Data summaries", booktabs = TRUE, escape = FALSE, format = "html", table.attr = "data-quarto-disable-processing=true") %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = TRUE, font_size = 14)
front-wheel drive | rear wheel drive | 4wd | Overall | |
---|---|---|---|---|
city miles per gallon, Mean (SD) | 19.97 (3.63) | 14.08 (2.22) | 14.33 (2.87) | 16.86 (4.26) |
highway miles per gallon, Mean (SD) | 28.16 (4.21) | 21 (3.66) | 19.17 (4.08) | 23.44 (5.95) |
number of cylinders, N (%) | ||||
4 | 58 (54.72%) | 0 (0%) | 23 (22.33%) | 81 (34.62%) |
5 | 4 (3.77%) | 0 (0%) | 0 (0%) | 4 (1.71%) |
6 | 43 (40.57%) | 4 (16%) | 32 (31.07%) | 79 (33.76%) |
8 | 1 (0.94%) | 21 (84%) | 48 (46.6%) | 70 (29.91%) |
date of purchase (Date class), Mean (SD) | 2003-06-08 (235.2 weeks) | 2004-09-28 (235.47 weeks) | 2004-04-21 (237.55 weeks) | 2003-12-21 (236.59 weeks) |
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, Mean (SD) | 10.5 (5.32) | 11.59 (4.49) | 10.33 (4.99) | 10.53 (5.09) |
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, Mean (SD) | 10.57 (5.24 weeks) | 8.43 (5.17 weeks) | 9.19 (4.77 weeks) | 9.76 (5.07 weeks) |
some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, and then set to TRUE if the difference is greater than 10, N (%) | ||||
FALSE | 40 (37.74%) | 11 (44%) | 45 (43.69%) | 96 (41.03%) |
TRUE | 46 (43.4%) | 8 (32%) | 34 (33.01%) | 88 (37.61%) |
R NA Value | 20 (18.87%) | 6 (24%) | 24 (23.3%) | 50 (21.37%) |
some random comments, N (%) | ||||
. | 9 (8.49%) | 5 (20%) | 12 (11.65%) | 26 (11.11%) |
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | 12 (11.32%) | 3 (12%) | 8 (7.77%) | 23 (9.83%) |
Does it also fly? | 11 (10.38%) | 1 (4%) | 4 (3.88%) | 16 (6.84%) |
Does it come in green? | 12 (11.32%) | 1 (4%) | 10 (9.71%) | 23 (9.83%) |
I like this car! | 13 (12.26%) | 1 (4%) | 10 (9.71%) | 24 (10.26%) |
Meh. | 6 (5.66%) | 2 (8%) | 10 (9.71%) | 18 (7.69%) |
Missing | 8 (7.55%) | 3 (12%) | 14 (13.59%) | 25 (10.68%) |
This is the worst car ever! | 14 (13.21%) | 2 (8%) | 6 (5.83%) | 22 (9.4%) |
want cheese flavoured cars. | 13 (12.26%) | 2 (8%) | 18 (17.48%) | 33 (14.1%) |
R NA Value | 8 (7.55%) | 5 (20%) | 11 (10.68%) | 24 (10.26%) |
an all missing variable, N (%) | ||||
R NA Value | 106 (100%) | 25 (100%) | 103 (100%) | 234 (100%) |
invisible(setGeneric(name = "bivariate_data_summary", def = function(object1, object2) standardGeneric("bivariate_data_summary")))
setMethod(
f = "bivariate_data_summary",
signature = "dataSummaries",
definition = function(object1, object2)
{<- c(paste("<b>", object1@byLab, "</b>", sep = ""), paste(" ", object1@table[, 1], sep = ""))
rnames
if (length(object1@difftime_units) > 0) {
<- data.frame(c("", paste(object1@table[, "Mean"], " (", object1@table[, "S Dev"], " ", object1@difftime_units, ")", sep = "")), stringsAsFactors = FALSE)
object1Res else {
} <- data.frame(c("", paste(object1@table[, "Mean"], " (", object1@table[, "S Dev"], ")", sep = "")), stringsAsFactors = FALSE)
object1Res
}
if (length(object2@difftime_units) > 0) {
<- data.frame(c("", paste(object2@table[, "Mean"], " (", object1@table[, "S Dev"], " ", object2@difftime_units, ")", sep = "")), stringsAsFactors = FALSE)
object2Res else {
} <- data.frame(c("", paste(object2@table[, "Mean"], " (", object2@table[, "S Dev"], ")", sep = "")), stringsAsFactors = FALSE)
object2Res
}
<- cbind(object1Res, object2Res)
res <- cbind(rnames, res)
res
colnames(res) <- c("", paste(object1@xLab, ", Mean (SD)", sep = ""), paste(object2@xLab, ", Mean (SD)", sep = ""))
return(res)
}
)
<- rbind(
cars_bivariate_data_summary bivariate_data_summary(ctyBymanuSummary, hwyBymanuSummary),
bivariate_data_summary(ctyBymodelSummary, hwyBymodelSummary),
bivariate_data_summary(ctyByYearSummary, hwyByYearSummary),
bivariate_data_summary(ctyByCylSummary, hwyByCylSummary),
bivariate_data_summary(ctyBytransSummary, hwyBytransSummary),
bivariate_data_summary(ctyByDrvSummary, hwyByDrvSummary),
bivariate_data_summary(ctyByflSummary, hwyByflSummary),
bivariate_data_summary(ctyByclassSummary, hwyByclassSummary),
bivariate_data_summary(ctyByPartySummary, hwyByPartySummary),
bivariate_data_summary(ctyByCommentsSummary, hwyByCommentsSummary),
bivariate_data_summary(ctyByMissSummary, hwyByMissSummary)
)
kable(cars_bivariate_data_summary, caption = "By data summaries of miles per gallons for city and highway.", booktabs = TRUE, escape = FALSE, format = "html", table.attr = "data-quarto-disable-processing=true") %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = TRUE, font_size = 14)
city miles per gallon, Mean (SD) | highway miles per gallon, Mean (SD) | |
---|---|---|
manufacturer | ||
audi | 17.61 (1.97) | 26.44 (2.18) |
chevrolet | 15 (2.92) | 21.89 (5.11) |
dodge | 13.14 (2.49) | 17.95 (3.57) |
ford | 14 (1.91) | 19.36 (3.33) |
honda | 24.44 (1.94) | 32.56 (2.55) |
hyundai | 18.64 (1.5) | 26.86 (2.18) |
jeep | 13.5 (2.51) | 17.62 (3.25) |
land rover | 11.5 (0.58) | 16.5 (1.73) |
lincoln | 11.33 (0.58) | 17 (1) |
mercury | 13.25 (0.5) | 18 (1.15) |
nissan | 18.08 (3.43) | 24.62 (5.09) |
pontiac | 17 (1) | 26.4 (1.14) |
subaru | 19.29 (0.91) | 25.57 (1.16) |
toyota | 18.53 (4.05) | 24.91 (6.17) |
volkswagen | 20.93 (4.56) | 29.22 (5.32) |
Overall | 16.86 (4.26) | 23.44 (5.95) |
model name | ||
4runner 4wd | 15.17 (0.75) | 18.83 (1.47) |
a4 | 18.86 (1.86) | 28.29 (1.98) |
a4 quattro | 17.12 (1.81) | 25.75 (1.16) |
a6 quattro | 16 (1) | 24 (1) |
altima | 20.67 (1.97) | 28.67 (2.42) |
c1500 suburban 2wd | 12.8 (1.3) | 17.8 (2.17) |
camry | 19.86 (1.46) | 28.29 (2.14) |
camry solara | 19.86 (1.77) | 28.14 (2.19) |
caravan 2wd | 15.82 (1.83) | 22.36 (2.06) |
civic | 24.44 (1.94) | 32.56 (2.55) |
corolla | 25.6 (1.67) | 34 (2.65) |
corvette | 15.4 (0.55) | 24.8 (1.3) |
dakota pickup 4wd | 12.78 (1.99) | 17 (2.29) |
durango 4wd | 11.86 (1.57) | 16 (2) |
expedition 2wd | 11.33 (0.58) | 17.33 (0.58) |
explorer 4wd | 13.67 (0.82) | 18 (1.1) |
f150 pickup 4wd | 13 (1) | 16.43 (0.79) |
forester awd | 18.83 (0.98) | 25 (1.41) |
grand cherokee 4wd | 13.5 (2.51) | 17.62 (3.25) |
grand prix | 17 (1) | 26.4 (1.14) |
gti | 20 (2) | 27.4 (2.3) |
impreza awd | 19.62 (0.74) | 26 (0.76) |
jetta | 21.22 (4.87) | 29.11 (6.07) |
k1500 tahoe 4wd | 12.5 (1.73) | 16.25 (2.22) |
land cruiser wagon 4wd | 12 (1.41) | 16.5 (2.12) |
malibu | 18.8 (1.92) | 27.6 (1.82) |
maxima | 18.67 (0.58) | 25.33 (0.58) |
mountaineer 4wd | 13.25 (0.5) | 18 (1.15) |
mustang | 15.89 (1.45) | 23.22 (2.17) |
navigator 2wd | 11.33 (0.58) | 17 (1) |
new beetle | 24 (6.51) | 32.83 (7.63) |
passat | 18.57 (1.9) | 27.57 (1.51) |
pathfinder 4wd | 13.75 (1.26) | 18 (1.41) |
ram 1500 pickup 4wd | 11.4 (1.51) | 15.3 (1.89) |
range rover | 11.5 (0.58) | 16.5 (1.73) |
sonata | 19 (1.41) | 27.71 (2.06) |
tiburon | 18.29 (1.6) | 26 (2.08) |
toyota tacoma 4wd | 15.57 (0.79) | 19.43 (1.62) |
Overall | 16.86 (4.26) | 23.44 (5.95) |
year of manufacture | ||
1999 | 17.02 (4.46) | 23.43 (6.08) |
2008 | 16.7 (4.06) | 23.45 (5.85) |
Overall | 16.86 (4.26) | 23.44 (5.95) |
number of cylinders | ||
4 | 21.01 (3.5) | 28.8 (4.52) |
5 | 20.5 (0.58) | 28.75 (0.5) |
6 | 16.22 (1.77) | 22.82 (3.69) |
8 | 12.57 (1.81) | 17.63 (3.26) |
Overall | 16.86 (4.26) | 23.44 (5.95) |
type of transmission | ||
auto(av) | 20 (2) | 27.8 (2.59) |
auto(l3) | 21 (4.24) | 27 (4.24) |
auto(l4) | 15.94 (3.98) | 21.96 (5.64) |
auto(l5) | 14.72 (3.49) | 20.72 (6.04) |
auto(l6) | 13.67 (1.86) | 20 (2.37) |
auto(s4) | 18.67 (2.31) | 25.67 (1.15) |
auto(s5) | 17.33 (5.03) | 25.33 (6.66) |
auto(s6) | 17.38 (3.22) | 25.19 (3.99) |
manual(m5) | 19.26 (4.56) | 26.29 (5.99) |
manual(m6) | 16.89 (3.83) | 24.21 (5.75) |
Overall | 16.86 (4.26) | 23.44 (5.95) |
drive type | ||
front-wheel drive | 19.97 (3.63) | 28.16 (4.21) |
rear wheel drive | 14.08 (2.22) | 21 (3.66) |
4wd | 14.33 (2.87) | 19.17 (4.08) |
Overall | 16.86 (4.26) | 23.44 (5.95) |
fuel type | ||
c | 24 (NA) | 36 (NA) |
d | 25.6 (9.53) | 33.6 (13.05) |
e | 9.75 (1.04) | 13.25 (1.91) |
p | 17.37 (3.04) | 25.23 (3.93) |
r | 16.74 (3.89) | 22.99 (5.51) |
Overall | 16.86 (4.26) | 23.44 (5.95) |
type of car | ||
2seater | 15.4 (0.55) | 24.8 (1.3) |
compact | 20.13 (3.39) | 28.3 (3.78) |
midsize | 18.76 (1.95) | 27.29 (2.14) |
minivan | 15.82 (1.83) | 22.36 (2.06) |
pickup | 13 (2.05) | 16.88 (2.27) |
subcompact | 20.37 (4.6) | 28.14 (5.38) |
suv | 13.5 (2.42) | 18.13 (2.98) |
Overall | 16.86 (4.26) | 23.44 (5.95) |
some random political parties | ||
republican | 17.29 (4.52) | 23.57 (6.42) |
democrat | 16.26 (4.59) | 22.38 (6.25) |
independent | 16.84 (3.39) | 23.68 (4.83) |
Overall | 16.86 (4.26) | 23.44 (5.95) |
R NA Value | 17.11 (4.5) | 24.22 (6.26) |
some random comments | ||
. | 15.42 (3.94) | 22.08 (5.6) |
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | 17.04 (3.23) | 24.09 (4.95) |
Does it also fly? | 17.94 (5.52) | 24.75 (7.33) |
Does it come in green? | 18.39 (4.31) | 25.26 (5.5) |
I like this car! | 17.92 (5.16) | 24.75 (7.25) |
Meh. | 16.33 (3.4) | 22.61 (4.58) |
Missing | 15.84 (5.16) | 21.96 (7.33) |
This is the worst car ever! | 17.09 (4) | 23.82 (5.78) |
want cheese flavoured cars. | 16.91 (3.95) | 23.33 (5.85) |
Overall | 16.86 (4.26) | 23.44 (5.95) |
R NA Value | 16.17 (3.34) | 22.33 (4.72) |
an all missing variable | ||
Overall | 16.86 (4.26) | 23.44 (5.95) |
R NA Value | 16.86 (4.26) | 23.44 (5.95) |
<- rbind(
cars_bivariate_time_data_summary bivariate_data_summary(ctyByPartySummary, rdifftimeByPartySummary),
bivariate_data_summary(ctyByCommentsSummary, rdifftimeByCommentsSummary)
)
kable(cars_bivariate_time_data_summary, caption = "By data summaries of miles per gallons for city and random difference in time.", booktabs = TRUE, escape = FALSE, format = "html", table.attr = "data-quarto-disable-processing=true") %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = TRUE, font_size = 14)
city miles per gallon, Mean (SD) | some random numbers that are generated from a normal distrubtion with mean = 10 and sd = 5, and then converted to weeks, Mean (SD) | |
---|---|---|
some random political parties | ||
republican | 17.29 (4.52) | 9.5 (4.52 weeks) |
democrat | 16.26 (4.59) | 9.31 (4.59 weeks) |
independent | 16.84 (3.39) | 10.22 (3.39 weeks) |
Overall | 16.86 (4.26) | 9.76 (4.26 weeks) |
R NA Value | 17.11 (4.5) | 10.08 (4.5 weeks) |
some random comments | ||
. | 15.42 (3.94) | 8.21 (3.94 weeks) |
Blah, Blah, Blah, Blah, Blah, Blah, Blah, Blah | 17.04 (3.23) | 8.32 (3.23 weeks) |
Does it also fly? | 17.94 (5.52) | 9.49 (5.52 weeks) |
Does it come in green? | 18.39 (4.31) | 8.51 (4.31 weeks) |
I like this car! | 17.92 (5.16) | 10.44 (5.16 weeks) |
Meh. | 16.33 (3.4) | 10.21 (3.4 weeks) |
Missing | 15.84 (5.16) | 11.44 (5.16 weeks) |
This is the worst car ever! | 17.09 (4) | 9.28 (4 weeks) |
want cheese flavoured cars. | 16.91 (3.95) | 10.88 (3.95 weeks) |
Overall | 16.86 (4.26) | 9.76 (4.26 weeks) |
R NA Value | 16.17 (3.34) | 10.69 (3.34 weeks) |
R Session Information
sessionInfo()
R version 4.5.1 (2025-06-13)
Platform: aarch64-apple-darwin24.4.0
Running under: macOS Tahoe 26.0.1
Matrix products: default
BLAS: /opt/homebrew/Cellar/openblas/0.3.30/lib/libopenblasp-r0.3.30.dylib
LAPACK: /opt/homebrew/Cellar/r/4.5.1/lib/R/lib/libRlapack.dylib; LAPACK version 3.12.1
locale:
[1] C.UTF-8/C.UTF-8/C.UTF-8/C/C.UTF-8/C.UTF-8
time zone: America/New_York
tzcode source: internal
attached base packages:
[1] stats graphics grDevices datasets utils methods base
other attached packages:
[1] dplyr_1.1.4 reshape2_1.4.4 Hmisc_5.2-4 ggplot2_4.0.0
[5] kableExtra_1.4.0 bookdown_0.45 knitr_1.50
loaded via a namespace (and not attached):
[1] generics_0.1.4 renv_1.0.10 xml2_1.4.0 stringi_1.8.7
[5] digest_0.6.37 magrittr_2.0.4 evaluate_1.0.5 grid_4.5.1
[9] RColorBrewer_1.1-3 fastmap_1.2.0 plyr_1.8.9 jsonlite_2.0.0
[13] nnet_7.3-20 backports_1.5.0 Formula_1.2-5 gridExtra_2.3
[17] viridisLite_0.4.2 scales_1.4.0 textshaping_1.0.4 cli_3.6.5
[21] rlang_1.1.6 base64enc_0.1-3 withr_3.0.2 yaml_2.3.10
[25] tools_4.5.1 checkmate_2.3.3 htmlTable_2.4.3 colorspace_2.1-2
[29] vctrs_0.6.5 R6_2.6.1 rpart_4.1.24 lifecycle_1.0.4
[33] stringr_1.5.2 htmlwidgets_1.6.4 foreign_0.8-90 cluster_2.1.8.1
[37] pkgconfig_2.0.3 pillar_1.11.1 gtable_0.3.6 Rcpp_1.1.0
[41] glue_1.8.0 data.table_1.17.8 systemfonts_1.3.1 xfun_0.53
[45] tibble_3.3.0 tidyselect_1.2.1 rstudioapi_0.17.1 farver_2.1.2
[49] htmltools_0.5.8.1 labeling_0.4.3 rmarkdown_2.30 svglite_2.2.1
[53] compiler_4.5.1 S7_0.2.0